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The stability of idempotent commutative and associative operations of generalization is
investigated. Stability is defined as the good reproducibilify on generalization subsamples of the
set of all facts from a sample, The concepts introduced in the paper are related to the basic ideas
of certain mathematical and applied metbods (#P-completeness) including the jackkmnife
method. The difficult solubility of the problem of calculation of stability indexes is established.
The boundaries of the variation of these indexes are determined for the sample complementation
Pprocess. An algorithm computing stability indexes is presented. It is linear relative to the index
magnitude, An approximate algorithm, which is polynomial with respect to the length of the
input string is also snggested. A computer experiment is described, which used stability indexes
for selection of hypotbeses in a technical diagnostic problem.

1. SIMILARITY OPERATION AND HYPOTHESES BASED ON IT

Most systems of machine learning (hereafter, ML) operate with a notion of similarity as a means for
isolating regular patterns in observabie objects. Similarities are also used to classify new objects with the aid of
newly found patterns, Similarity is defined either as a relation [1, 2], or metrically {1, 3, 4], or as an operation that
puts into correspondence to several initial objects a subobject that expresses their similarity [5-14]. In this paper,
similarity is understood as an idempotent commutative and associative operation on pairs of objects, in terms of
the theory developed in [7, 8). These natural properties of a similarity operation allow expressing unambiguously
the similarities of sets of objects in terms of pairwise similarities independent of the arrangement of the objects in
a database* (e.g., [15]). This definition of similarity is adopted, in particplar, in the JSM-method of automatic
hypothesis generation (JSM-AHG) [6].

Let S be a set of objects representing a certain object domain, An operation - on pairs of objects from S
is called a similarity operation if it specifies on the set S a lower semilattice, i.c., for arbitrary objects x, y, and z from
S relations (1)-(4) take place:

(1) sMixm=x;

(2) xMy==yrix;

(3) *TUw(32) = (x[AN123

(4) xMisy=3, for a certain s, from S, which is called the empty object.

The operation M defines in a natural fashion on S the relation of embedding x T y==s[)y=x .and strict
embedding x [Ty == (s y)& (s y).

The following examples of operations have properties (1)-(4),

1. The Boolean lower semilattice <2?“, N, 22> . This definition of similarity corresponds to a
representation of data by a set of descriptors. The operation of similarity is equivalent to the operation of
intersection of sets. Representations of this kind are used in many ML systems and, in particular, in JSM-AHG.
It is readily obtained by conversion of a representation of similarity by semilattices on n-tuples of a fixed length with

*An alternative to this operation is a parametric family of n-place operations, where n is the number of
objects for which similarity is sought (e.g., [11]).
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component-by-component “fanlike” specification of similarity (see [14] and also §6 below):

Gy 4, By

2. A semilattice on N-sets of hypergraphs with ordered labels of nodes and byperages [12-14], where the
result of the similarity operation acting on & pair of sets of hyperedges § and # is the set of all
embedding-maximal common subhypergraphs of the hypergraphs from ¢ and .

3. Interpolational semilattice of intervals [15]. Let {i, j) and (k, I), where U<, 4, & 1<S, i), &<l ,be
pairs of numbers indicating boundaries of intervals; U and S are minimal and maximal possible values. Now, the
similarity of these intervaisis (i, /) A(k H={p, q), where p==min(i, #), gmemax (j, {).It canreadilybe verified
that the triplet <{{i, HU<i/<S} A, (U, S)>isalowersemilattice, Le., it has properties (1)-(4). The initial values
of numeric features can be specified by pairs of the form (x, x) if the data are presumed to be precise; otherwise,
they can be specified by pairs of different values of this form: lower bound of possible value, upper bound of
possible value, We now proceed to definition of hypotheses in accordance with [6]. Suppose that we examine a
certain property W of objects from S. The set of all objects from S, of which if is known that they have the property
W, will be denoted by S*; the sets of objects of which it is known that they do not have the property W will be
denoted by §'; the set of objects from S for which it is unknown whether or not they have the property W will be
denoted by 87, Thus, S*==S\ (S+\)S5-).

Definition 1.1, h is local similarity of X,, .., X, from S if X\ ...MX, =k,

Definition 1.2. <4{X,,...,X,}> is global similarity with respect to the set $'=sS, if Xi. . . ., Xa€,
XiP...MXa=h andforanarbitrary ¥: Y& S'\{Xi...., Xa} wehave Yma=ss (thus his local similarity of
objects from {X,, .., X,} and this set is the set of all objects from §’ that contain k).

Definition 13. <i{Xi,... Xs}> is positive hypothesis (concerning the cause of the property W) (or
(+)-bypothesis) if <#,{X......Xs}> is a global similarity with respect to the set S* and h is not a subobject (in the
sense of =) of some object from S'. We will say that b is the bead of a hypothesis. Negative hypotheses (or
(-)-hypotheses) concerning the cause of the absence of the property W are defined in a dual fashion.

Definition 1.3 is one possible definition of a hypothesis on the basis of the similarity operation. We may
require that other conditions be satisfied: stronger, or weaker than, or incomparable in streagth with, the condition
from definition 1.3 (in JSM-method it is referred to as condition "witk prohibition of a counterexample”). This
condition is adopted here as one that is typical for machine learning: it requires that a gencralization of examples
go not include counterexamples as special cases. For the problem of stability of hypotheses, it is essential that
hypotheses are global similarities rather than a specific form of the condition.

Hypotheses obtained in conformity with Definition 1.3 can be of an independent practical value, on one
hand, and used m the framework of the system for recognition or prediction of the absence/presence of the
property W in objects from S' on the other. We will formulate an elementary version of a predictive rule: the
principle of inductive generalization (PIG) in accordance with [6].

Definition 1.4. An object PeS+ is called (+)-prediction (or {+)-hypothesis of the second kind in the
terminology of JSM-method [6]) if there exists (+)- hypothesis <A,{X,,...,X,}>>, such that #—P and for any
(-)-hypothesis <&.-{Yy,..Y,} we have »'ctP.

A negative prediction ((-)-prediction) is defined as dual.

2, STABILITY: MOTIVATION AND PRECEDENTS

Definitions 1.3 and 1.4 presume that the substantive cause of the property W can be the common
characteristics possessed by a set of objects X, ..., X, that have the property W. All the characteristics that are
dissimilar in these objects are assumed to be immaterial for formation of the hypothesis «h,{X,,... Xa}> . What
is the degree of substantiation of this assertion? Obviously, (+)-hypothesis, obtained according to Definition 1.3,
can be regarded as better substantiated than a hypothesis that satisfies a weaker condition that requires merely that
the head of (+)-hypothesis not be the similarity of (-)-examples (“weak rule”) {61

It is also obvious that a hypothesis corresponding to a global similarity of a larger number of examples is
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more substantiated. However, this too is not the extreme situation. In a certain case (e.g., for a hypothesis #,=
<h, {X,....Xa}> ), these examples in a certain sense can be "dependent® or “too similar” such as those
produced in the same series of experiments by the same experimenter.

In a different sitvation (e.g, for a hypothesis Hy,=<hy, {¥i,...,Ya}> ), cxamples can be more
"independent” such as those obtained by different experimenters or different methods, etc. Thus, they can be
dissimilar in all respects, except for the structural fragment h,. That would mear, in particular, that the hypothesis
H, can be derived also from a smaller number of examples because the independence of experiments gives hope
that the substantial-causative substructures could be separated faster and more reliably from those which are
immaterial and merely accompany a certain type of experiments. That, in turn, implies that H, will be confirmed
on a larger number of subsets of the initial complete set {Y), ..., Y, } of examples for H,, i.c., H, will have a greater
"stability” and "reproducibility” in case of random supplementation or reduction of the set of initial examples. Since
each example is obtained in’a certain sense at random, the stability to accidents of this kind indicates a higher
Likelihood of the hypothesis H,.

The idea of stability has been used in analyses of the reliability of hypotheses of different kinds. Among
the methods operating with the notion of stability are the methods of nonparametric statistics - the jackknife
method and the bootstrap method [16] - and the methods of sliding control. An elementary exampie of an implicit
application of this notion of stability is construction of extrapolation polynomials. Suppose there are n points x,, ..,
x, of a space R", We wish to construct a polynomial from these points such that the points x,, ..., X, lie on its curve.
Generally, it is possible to construct 2 polynomial of degree not greater than n that satisfies these conditions.
However, if it is possible to construct a polynomial P from a certain subset of points {z,,.... zJein,. .., 2a)
in such a way that all the points x,, ..., x; lie on its curve, such a polynomial will be of degree not higher thaa k. Thus,
P, as a hypothesis of a regularity will be simpler and, therefore, more reliable than the bypothesis for which the
polynomial can only be constructed from the entire set {x, ..., x,}.

As mentioned above, the idea of stability s fundamental to certain nonparametric statistical methods. In
particular, in the jackknife method the variances of arbitrary statisties (functions of samples) are estimated in the
following fashion. From an initial sample of size n all possible subsamples of size n - 1 are compiled. For the i-th
subsample we calculate the value S, of the statistic S that we wish to examine, Taking the average $* of these values,
we then calculate the mean of the squares of deviations S, from S*. The result (within insignificant arithmetic
transformation) gives the estimate of the variance of the statistic S according to the jackknife method. The method
sometimes yiclds a better estimate than conventional techmigues. Modifications of this method are also possible that
make use of all subsamples of size n - 2, 0 - 3, etc. However, they a require considerable amount of computations.

The bootstrap method evaluates the variance of a statistic in a similar fashion, However, new samples,
which are also of size n, are generated from the initial sample by n-fold selection with replacement (each element
of the initial sample can appear from zero to o times in the new sample).

Some authors operate with the idea of stability outside the framework of probability models. In particalar
in [7], the following problem is considered. A set X, is given, which consists of N points; the values of the function

Ax) for these points are known, The objective is to isolate, from a given class of models (functions with parameter
8) Km{u(s,©) :8==(6, . . ., 8m6R™} suchamodel whichontheset XcR*(XNXx==@) forwhose points
we must evaluate the function f - has the greatest stability. Stability is defined as proximity for x6X of the values
of the function of the form u(x, ) constructed on subsamples of the sample X,, to the value of the function
constructed from the entire sample X,.. The results of experiments reported in {17] indicate a high selectivity of this
method. '

Ideas related to the notion of stability are also basic to certain probabilistic logics [18]. Studies in this field,
probably initiated by Carnap’s work on inductive logic [19], base evaluation of substantiation on the number of
universes {or, in a more general statement, on 2 numeric measure of universes) in which a statement is derivable,

In the above-listed areas, the notion of stability as reproducibility of results on subsamples was realized
for numeric data, When no pumeric data form the lower sublattices similar to sublattices 1 and 2 from §1,
substantiation of the stability of similarity acquires an additional aspect. A good reproducibility of similarity h on
the subsets of the set {X,, .., X, (i.e., the existence of a large pumber of subsets {X:,,. . . X1, suchthat X;, M
.--MX:y =Hh ) means that sets from &F={(X,\h),.... (Xa\\#}} are "poorly” similar to one another.*

The fact that the similarity of "residues” (the sets from & ) is nontrivial (#0)supports the idea that the

*\ is either Boolean difference for lattice 1 or pseudodifference for lattice 2 [12-14],
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cause of W in most likelihood is not h but certain 4, . . . , A, 24 , By virtue of properties (1)-(4) of similarity
operation [T, similarities of a smaller number of objects are objects that are not smaller (in the sense of relation
=)

Thus, the poor reproducibility of hypotheses on subsets of examples or a low stability indicate that the
"residues” from the set X contain substructures or parts that are essential for manifestation of the property W, and
b can be the cause of the property W only with combined when some “additions” (that complement hto b, ... h,).

3. BASIC DEFINITIONS

All the definitions will be given for positive hypotheses; for negative hypotheses the definitions of stability
are dual Thus, let &= <A,{X,,...,Xa}> be (+)-hypotheses of the first kind. We denote

(H >!a-“X R .XU}I [Xh.....X‘J}C{X;.-...Xu}-
th...mxu-kl:

Bl
CHyg=U CH) i
E1(). Hy= % (H )} go(B H)ymu (H);.

Wherever it is obvious which hypothesis is discussed, the arguments at g(g, H) will be omitted, i.e., we will
write g, (or gg).
Definttion 3.1. The stability index of a hypothesis <H, {Xi...,&s}> of j-thlevel for 2jin=—1 is

£

:,—(—j:-)—.

Definition 32, The integral stability index of a hypothesis ¢ &, {X,.-... Xn}) is

Definition 33. The averaged stability index of a hypotbesis ( #, {X,..... Xs}) is

f.,,=.,,l__2-( b ,,).

=

Stability indices are connected with the similarity operation in the same fashion as the sample average is
connected with a sample variance (calculated by the jackkaife method; see above the expression for the jackknife
variance estimate) in statistics, It should be clear that a bootstrap definition of stability estimates is unjustified.
Indeed, taking i times, in a bootstrap sample of size n, a certain object from {X,, .., X,} would be equivalent, by
virtue of idempotency (property 1) of the operation 1, of merely reducing the number of other objects in 2
bootstrap sample. As a result, we would obtain the same types of samples as with elimination of examples but these
samples would make different contributions to stability indices. Sampies with a large (~n) and small (~2) number
of examples would bave less probability of occurrence in new samples than samples with the average number of
examples. This preference is unjustificd because there are no samples a priori preferable.

The following property of stability indices is a corollary of the elementary property of monotone Boolean
functions®: the relative number of units of a monotone Boolean function (J + 1)th layer of a Boolean hypercube

*For a fixed hypothesis r=<n, [Xi,... Xg)> , it is the function,

ey |
(. 0 Y= {Xh' cone X,‘} .ndxhn...nx,‘uh;
. = 0. ¥ }’-[X‘-l. EEY] Xl!}mdxhlj...ﬂx,‘%k.
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is greater than in the jth layer.
Lemma 3.1. For an arbitrary hypothesis ¢n, {X,,. . . ,X.}> we have

I!‘ ras G!Il-l-

Proof. We consider famlhcs ¢HYy (H)j44, and a bipartite graph B constituted by the layersjand j + 1
of the Boolean hypercube 2{****a} In the graph B, eachof (,%,) podes of the layer j + 1) is connected with
the node (j + 1) of the jth layer; each of (7) nodes of the j-th layer is connected with n - j nodes of the (j + 1)tk
layer. We isolate in the graph B those nodes that correspond to the families <H>,and <H>,,. Since any superset
of size j + 1 of sets from <H?>, is a set from <H>,,, the number of edges in the graph that connect nodes
corresponding to sets from <H > ;, with the nodes corresponding to sets from <H>,; ise = g, (n- j). On the other
hand, generally, not each subset of size j of a set from <H>,,, is a set from <H>, Therefore, the number of

n
edgeseisnotgreaterthan &4 (J+1). Hence, g;(n—J) <&y (J+1). Since ('E-:i)) = ;:{ , therefore,
n I
;;il < r{:} - (i) and ff=f,{-<"f'§,+‘"'.—-f1+:- !
(!-H) (1) (1+1_

4. STABILITY VARIATION CAUSED BY AN EXPANSION OF A SET OF EXAMPLES

Let the set of initial examples S be expanded by inclusion of 2 new example E.

Definition 4.1. A new (-)-example E refutes (+) hypothesis <b, {X,, ... X} >, if from the set of examples
S+, S~U{E} one cannot derive (+)-hypothesis with head b (Le., ATE ).

Definition 4.2. A new (+)-example E confirms (+)-hypothesis <h, {X,, .., X} > if k= E.

Stability indices of a hypothcm that has the head b after introduction of new k examples will be denoted
by superseript k, e.g., 1%, For convenience of notation, we will also set

Ia-l..
Iym=0 for JE6Z\ {2,...,m}.

Theorem 4.1. Suppose that a set of examples has been expanded to include k new ( + )-exampies confirming
a hypothesis <h, {X,, ..., X;}>. The stability indices of 2 hypothesis with head k then lic in the following limits

I 7 [gH- (lk) I B T

(n"i" ) ]

J
. +(k _k_l )g}-lﬂ'i'gj—l](!’]k(

< (n;n) [g}+(j:l )"’"""(n-;iTl )]

at(2<j<no+k-1);

2h gy +2t—1 !k Ep+ 2 (nh—1)—k
24 e(n+ &+ 2) <iz< 2 _(n+r+2)

Proof. 1. The lower bounds for indices L* (or /%, J6{2.....n+k—1). At a given initial value of the
index I, the value I" is minimal if any subset of thc set K of new confirmmg examples yields h in the intersection
of only those sets of examples from {X,, ..., X, }, which themselves have h in the intersection. In more rigorous
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gk

n+ k&
7" |
[x mM...mx, J=" if and onlylf X4 .. 00X, =h. Here, Xicon X'i E(Xre + - X {K.... Xy isthe
set of new e.xamplcs Xy vvonr Xy 615 X.,}

Let us conmder the tenﬂs that makc up the value of g*. The first term, i.c., g; corresponds to subsets of the
size of the j-th set of initial examples {X,, .., X_}. The other terms appear as g;; ( : ) They are obtamed by
virtue of the fact that an arbitrary set {Xl (reves X‘J-a} from <H >, can be supplemented with any new confirming
examples X, ..... X’,' to obtain a set {Xs.....):ih.x .,X,*},yhichalsohashinthcintcrsectionofaﬂits
elements X; ... ﬂxq nx. n.-- [1X, =+ Therefore, g!k_E gH.( : ) and the lower estimate for
I* has been proved. S=t

2. The lower bounds for the index Iy (or 7 ). When a new confirming example is received, each vaiue
of g:!, 2s=i n—! becomes not less than the value indicated in the preceding section. The entire sequence of values
of g is g2 ge—+-gs---, En-t +-gnoi, En—+1.Their sumis gymmgs +-{gatga}+. ..+ (@t gna}+{gaart+1)

=2g:+1. Therefore, after receiving k new confirming examples, the value of g is not less than 24 g~ 28~}
-1 (ie., g2 gz +2*—1 ) and

terms [ph= takes the minimal value if for any p,q [ <p<#. l<g<n, XN, .0k n

r

y. g+ 2t—1
13> .
Wh—(nt k+2) .

3. The upper bounds for the indices I* (or 5;%), the values of JE{2.....n+k—1} are obtained from
analysis of the sequence of new cxamplcs Xu.... X+ that confirm the hypothesis H and are of the following form:
X'in the intersection with any previous cxamplc confirming H yields b; more precisely, XimX=ha for Xg(X,.

.. Xn. X%,..., X1} Inthatcase, fork = 1, g/ is the sum of the number of old examples g, and the new examples
formed from] 1 old examples and a single new example: £/ =g;+ (; ) Suppose that for k=¢ g//=g;

£
+(j:! ) ' +(n}' 1 1). In that case, for = ¢+12;*! is the sum of the number ot'oldcxamplcsgj and
Dew examplcs formed from j - 1 old examples and a single new one:

n4t
gﬂ*’“‘f’*(;—-t )-gf"'(l—l)"'
n4i-—=1 n<t
""‘( J—1 )"‘(1-41)'
4. The upper bounds for the index I, (or 77 ). The initial values of g, were  g,.. o 8oy B3 Eaarens

€ £3- ; after the arrival of X', these values are expressed by é.-}l(l ) g,+(s 1). . 3“"*(3—2)
&a+ (R:I),respcctivcly, where g, = 1. In this case,
zé"(gl'i- -..+8n-|)+((;l )+

m+(‘,f,1)+...+(,,_fl )+1)-g,+2~—1.

-  Eot+27(2*—1)—%
Hence gl gy 4284414 + 29— kawgy - 27(2*—1}~k and T4 = ;“ “—-Eﬂ+ : +)_2) .

Are the estimates indicated in the theorem exact? We will indicate sequences for which these estimates
are exact on a fairly large number of new examples k.

We consider the Boolean case: S==2¢, U=={d,,...,d.}. Let ¢& {Xi...,Xs}> be an arbitrary
(+)-hypothesis. Suppose that X'we X\ {A}, Vo= X:Ml... UXal, U’-U\ (U'yn), U’-{d; R 1 3

A sequence of new examples realizing the upper bound of the variation of Iy, is constructcd as follows: the
pth new example is of the form X,=hy{di,}.  Obviously, any pair of new examples and any new example with

any old example forms h at the intersection. The maximum number of such new examples is &= | U= |U|—jU]
—jhi.

A sequence of new examples realizing the lower bounds is constructed similarly; the pth new example is
of the form X,==AUUMJ{di,}. As can readily be seen, new examples give h at the intersection with only those old
examples, which themselves have h at the intersection, and, in this fashion, the lower bounds of stability indices
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indicated in Theorem 4.1 are realized. The maximum number of new examples k which realize precisely the lower
bound is also km= | U?} o= | Uj—] L] —] k).

We will now examine the Iimits of the lower and upper bounds of stability indices for k — oo,

The lower limits of the level indices behave differently: for the indices of the upper levels, they approach

1 in the limit; for the lower levels, they approach 0. Indeed, by virtue of Theorem 4.1, we have: Inpagm=
1

R
T En-rt{j 1)) a4 Jim Ipssi=1. On the other hand, Iy= gy £, a0d lim [y=0.
(n+k—-1) ( 2 ) _ -

The behavior of the lower limits of the indices of the middie levels and the averaged index I_* remains
unclear.

The Imit of the lower bound of t.h2= integral stability index is strictly greater than zero and smaller than one.

Indeed, the function £ (rjmor—2 2‘:+ increases monotonically at x > O because

—2f 4 (A + 2+ 2).2F. 1092
Ny >0

S (xym-—

atx ? 0 and, therefore, the function 7% Iz(%) decreases monotonically, as k grows and approaches llm _!;‘_. ko=
Ey+
o >0.

The upper bounds of stability indices bekave vniformly: they increase monotonically and, in the Limit,

approach 1. Indeed,
emgebn ({447

o ()
"z )
and, by virtue of Theorem 3.1, it is also true for T,% .... Ty, ;. Tat.

28t e (27— g3)
W= 2)
_f®)—d _(1_ d—b )
S (k)—b fe)—b /)
where f(k)=23+—% is a strictly monotonically increasing function fork & 0 and Z==(2%—£3)»(n+2)mb
because gy 27—n--2. FR)— b2 fmn+2>0 for any k, n > 0, d=b = const, Therefore, I_z(k)
increases strictly monotonically and mn Ty (h)=1.

We should note that the monotope variation of the lower and upper Limits of I;*(k) allows us to
strengthen the statement of Theorem 4.1 as far as this index is concerned. These limits hold not only for confirming
examples but also for any nonrefuting examples. Indeed, a new (-}-example cannot change the stability of a
bypothesis - it can only refute the hypothesis itself. (+)-Examples that do not confirm a (+)-hypothesis <h, {X,,
wy X3} > by virtue of this monotonicity cannot cause an integral stability index to be smalier than the lower bound
or larger than the upper bound.

An analysis of the asymptotic behavior makes it possible to formulate hypotheses concerning the behavior
of the index Iy alone: in most likelihood, with the reception of new examples, the value of this index will increase
because there is practically no room for it to decrease any further (Fig. 1).

For example, for the hypothesis <h, {X,, .., X} >, nm=4, the ratio of the initial value of 1:° to the limit
lim 7% for the average (~1/2) value of I;0is
l'--g 8-! 0

oy ey fd RS

Atn = §,

&x g¢
m-’i;ﬂﬁl.m-
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Fig. 1

Thus, the difference is very small as compared with the potential doubling of *Iim i relative to Iz’. Now, if we

represent the set of examples of a hypothesis <h, {X,, ..., X, } > as produced by supplementation of a certain initial
set of size r < n, we can conclude that for hypotheses with larger n Ir is more likely to be greater than for
hypotheses with small m. This "soft” correlation between Iy and a number of examples atlows us to give preference
to the integral stability index as the most representative of the indices for which the asymptotic behavior of the
lower bounds is known: on one hand, Iy explicitly reflects the stability of a hypothesis; on the other hand, implcitly
it refiects a number of confirming examples.

5. ALGORITHMIC COMPLEXITY OF COMPUTATION OF STABILITY INDICES

Regrettably, exact calenlation of stability indices in all likelihood (if P # #P), even when the examples are
represented by sets, cannot be accomplished within time that is polynomial with respect to the size of the hypothesis
<h, {X,, ... X,}>,i.e, |h| + n. This can be established by virtue of Theorem 5.1. We recall that #P [20] is the class
of problems that can be calculated by a nondeterministic Turing’s machine within polynomial time. A problem for
#P is said to be #FP-complete if any problem from #P is reducible to it (after Turing). The set of #P-complete
problems comprises not only erumerative probiems that correspond to NP-complete recognition problems (the
problems of the number of Hamiltonian paths in 2 graph, the number of ensembles implementing CNF, etc.) but
also enumerative problems for which the corresponding recogrition problems are polynomially soluble (e.g, the
problem of the number of maximum paired combinations).

Theorem 5.1. Suppose that a Boolean algebra is used for data representation (see §1). In that case, the
problem Slg of calculation of the stability index It of an arbitrary hypothesis <h, {X,, ..., X,}> is #P-complete.

For the proof we will introduce certain auxiliary problems.

The problem of the number of node coverings (NNC)

Given: Graph G = <V, E>,

Find: The number of node coverings, i.e., #{V'sVi if (v, v)€E ,then u6V” or veV7].

The probiems of the aumber of implicants (NT)

Given: Monotonous 2-CNF, i.e., the formula F=CA. . . ACr, where

C!=(;"Vxh)xi‘;x"exﬂ{xp Y x;}.
Find: #P{Y|YCX. A x;=F).

Problem of the number of subfamilies with fixed intersection (NSFT). _

Given: A finite set 22 and 2::2‘”, a family of different sets 82={X,,...,Xa}, where Xifi... NXa==h .

Find: The number of subfamilies #” of the family & which are such that the intersection of all members
of the subfamily & is h, Le.,

#{Qf_gglxr.. [Xh, e Xf,} and Xy ... {'}X‘;—h},

‘We will now prove lemmas that lead to Theorem 5.1.

Lemma 52. The NI problem is #P-complete.

Proof. We will reduce to the NI problem the following problem "the number of Boolean sets that satisfy
2-CNF Fe=C,AC3A...ACp», where Cip=(¢, vy,) and y,JEX: ;" The #P-completeness of this problem has
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been proved in {20]. Suppose that |X| = n and A = (a,, .., a,) is 2 Boolean ensemble that satisfies F. Let {j,, ...,
Jc} be serial numbers of single components of the Boolean ensemble A. We form 2 conjunction ¥ jw=y; A...
Ay where y; €X. Obviously, Y; is the implicant of two-CNF F, Conversely, cach implicant ¥ gy A... A Yna,

of the formula F has a corresponding Boolean ensemble A™=(a,™, .... a,™) , where positions m,, .., m, are
one-positions and the remaining positions are zero-positions; the Boolean ensemble A® fulfilis F. The reducibility
has been proved. Since the notation of NI cannot exceed the size log2Xi=X and reducibility is polynomial,
Lemma 5.2 has been proved.

Lemma 53. The NNC problem is #P-complete. -

Proof. The membership of the NNC problem in the class #P is not questioned, because the size of notation
of the problem solution is not greater than log2'¥'==| V| bits, We will prove the #P-completeness of the problem
by reducing to it #P-complete problem NI. As in [21]}, we construct from an arbitrary 2-CNF F a graph G = <V,
E> and V = {u,, .., iy} {where each u, corresponds to a variable x; from F) and Es= {(u;, 35} | (/1)) is included
in the conjunction}. Any nodal covering of G corresponds to the implicant of F, and conversely; any implicant of
F corresponds to a certain nodal covering of G. The reducibility is implemented within a time lincar with respect
to the size of F [,

Lemma 5.4. The NSFI problem is #P-complete.

Proof. In Turing’s terms we will reduce the NNC probiem to a special case of this problem (at h = &).
Suppose that we have an arbitrary graph G = <V, E> with no isolated nodes (which does not impair the generality
of the analysis), where V={a,,...,0:}, EcVXY. WedenotebyN(V) the set of edges from E which are incident
tothe node v; Np(V)==E\N(v). Forcertain o, 0;6V, wehave N(o;)==N(v;)== if and onlyif N(v,)=
N(vy== {(vi, vi)}, ie. v, and v, are incident to onc and tbe same edge, which is not conpected with other nodes
of the graph G. We will caicunlate the NNC of the graph as follows: we isolate in the graph G isolated edges (ie.,
edges of the form (v, v;)€E, for which ¥ (v} =N(vs} ). Suppose that there are k such edges in the graph G. The
nodal covering of these edges can be executed in 3* ways (three ways per cach edge: it can be covered by either of
the two nodes or by both). If the remaining edges of the graph G can be covered in d various ways, then all the
edges of the graph have d-3* coverings. We have only to determine the pumber of nodal coverings of unisolated
edges of the graph (we will denote this set by E’). Suppose that edges from E have incident nodes from the
set V'< V. Now, on any two different nodes v, v/€V, we have N (v;)# N(v)) . By definition, the nodes v,. ....
v.€V'  form a covering of E if and only if ¥ (v,)J... UN (v/)=E’ or, by de Morgan’s law, Ng- (w)(}...[1Np
(vr)=g. Thus, the set {v, .., v,} forms the nodal covering of the graph G = <V’ E’'> if and only if the
intersection of all sets of the family N g (%), .... Nz (v/) is empty. We have thus reduced the NNC problem for
<G = <V, E> to NSFI problem with &={~Nz. (a,). ..., Nz (aa)}. The reducibility is polynomial because the

dimension of the set & is not greater than » ((-—;—)—(n— I)) , e, 0(n3),0

Theorem 5.1 is a simple corollary to Lemma 5.4. In conditions where the hypothesis H is not contradictory
and the set of all examples gencrating it is &, NSFI is gy.

Corollary. The problem of determination of I; is #P-complete.

Indeed, if we know the values of L for 2 £j < n - 1, we can calculate the value of Iy 25

=3 ()

We will describe and evaluate the complexity of the algorithm that computes the stability indices of a hypothesis
<h, {X,, .., X,} > in the Boolean case.

We assume that all examples and hypotheses can be represented by Boolean vectors of size |U| = m and
that two bit rows of size b can be multiplied or compared in b computer operations.

Level 1.

1. Generate subfamilies of the family {X,, .., X,} of size n - 1, i.e,, the family &:  {X,,..., Xaui}, {Xu
ooy Xu=g, Xuli.oiy {Xn..., Xa). Each of the subfamilies can be represented by 2 set of numbers from 1 to n. This
step takes O(logn (n — 1) computer operations and 0(log n-(n — 1)-n) memory locations.

2, For each set from the familyd,, compute the intersection of all its members and match against h. Count
the number of intersections that coincide with h. The step takes up 0(n(n—1)m)computations and G(n{z—1)m)



memory locations.

Level i,

The input to the leveli is the family 9 p-t41: {Y SRR P } of subfamilies of size n - 1 + 1 of the family
{X,, .., X,}. The members of these subfamilies in the intersection form h (and, therefore, #,., =/p_14, ( ; nl )
ie., ty=£,_,)

1. Foreach Y, from & 4-iy: geperaten -1 + 1 subfamilies 7,',...,Y."*! of size n - i. The families that
are generated are represented by lexicographically ordered ensembles of numbers: each X, from {X,, .., X, is
assigned a number i. A subfamily Y, is assigned an ensemble of numbers corresponding to all the sets from Y,

The generation of the sets Y, takes wp 0(t,—,log n-(r—i+1)-n) computations. There are at most
t,,(n~1+), such sets. Therefore, the arrangement in the lexicographic order will take up at most
0(t;—,"logn*(n—i+1)-log(t,—;(n~i+1))) computations. The memory volume necessary does not exceed
0(t;~,(n—i+1)-log n).

2. We take the intersections of all sets in each Y," and compare the resuits with b. It takes up at most
0(t;—,"(n —i+1)-m-(n-i)) computations, where t,_,(n—i+1), is the maximum number of families Y, and (n- i) is
the maximum size of Y,

3. Paraliel to intersection and comparison, compute the number of intersections that match h. This will
take at most 0(t;—, (n—i+1)-m) computations and O(log(t,— ,-(n —i+ 1)m)} memory locations.

The composite complexity of all steps in the computation of I; taking into account that log t,—, < log 2°

A f ﬂ—!

= n, does not exceed 0 (( 2 r;)-m.n*) computations and requires at most 0 ((2 h)-m-n-loz’ n)' memory
Jaml el ™ Al

locations. The evaluation of Iy, I takes up at most 0 ((2 t;) -m-n') computations and 0((2 t,) -m-n-log?

u) memory locations. Thus, the following statement holds.

Theorem 5.5.
1. The stabilityindex [ (g; ) can be computed within a time that is linear with respect
j A=2
o kn:.‘xfg‘ E £; g

2. The integral stability index /g -9-——-—— F___f can be computed within a time that is linear
with respect to gg.

This assertion and the determination of #P-completeness of the probiems of calculation of stability indices
indicates that this algorithm is optimal within a polynomial multiplier 0(n*) (in the sense of the definition of
optimality of algorithms for #P-complete problems from {20]).

Effective algorithms can be proposed for oompunng the lower and upper estimates of integral Iy and
average L stability indices for the Boolean case (S= 2%, n. 2>) on the basis of the following propositions,

Theorem 5.5. For an arbitrary (+)-bypothesis H = <h, {X,,..., X,}> we have

g3+ .+ Ex gll—r"‘-o-“f'gn-q
ST R A e
2)+"'+ k _(n—r toet n—l)

Theorem 5.6. For an arbitrary (+)-hypothesis H = <h, {X,, ..., X } > wet have
LA ¢ EO £ )<Im¢
(e
<t 1 ( Ener & Sy ).
' (n—r) +(n—1)

We will first prove the following lcmma. s
Lemma 5.7. For arbitrary sequences (a), (b)), which are such thata, = 0, b, > 0 and < b}h and for

an arbitrary s = 1, we have
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ul+...+a,<ai+...+a,+,

b+ . b ™ b+ by
[- P N - Y <B,+,
[T o P P

The proof of the first inequality will be done by induction with respect to s, s = 1. Suppose that %’c%’- . In that

Gy G+ 8y 0y
case, 5 <3 T, < - Indead

8+ 8y 8y &b+ Gyby—8,8,—a,5y s

Ry i B (6: + ba) >0
&1+ G _il_- Gelg 4 8oy =8,y == 8,5,y 0
5F5 bshit By <

Suppose that jor s > m the statement has been proved and &, + ... + 2, = A, b, + .. + b, = B, In that

case,

Gy ..tBmtr Gyt ... F8m A+amn A
byt et By Dt tbm Bbomn B

AB+ opnB—BA—bmnA _ muB—dwnd _
=TT B @A b BB T ey

But g'f:'ﬂib :f and by virtue of the assumption in the induction % >% and the numerator A is nonnegative.C

Other inequalities are proved similarly, The proof of Theorem 5.5 follows directly from Lemmas 3.1 and
(5.7). Theorem 5.6 is proved similarly, Theorems 5.5 and 5.6 allow us to calculate the upper and lower bounds of
Iy and I, within the time O(|U|-0**"),

We know from experience that even for 2 small sumber of examples confirming a hypothesis, it may be
difficult to calculate the exact value of the indices. On the other hand, computations under Theorems 5.5 and 5.6
do not always yield good approximations: at those values of the parameters k and r from these theorems which
make it possible to employ computer resources (sec §6), the upper and lower estimates are often far apart.
Presumably, an effective computation of good approximations of stability indices would be possible with the aid of
Monte Carlo techniques.

6. COMPUTER EXPERIMENT

An experimental analysis of stability indices was conducted in a search by means of the JSM-system of the
potential causes of defects in polyamides produced by the Plastmassy Plastics Factory.

The technological and material parameters of polymer production process was characterized by eight
clements: characteristics of the weight share of volatile substances, acidity, and polarization of the raw material;
the serial number of the autoclave where the polymer was produced; the time of day and the work-shift number
during which the polymer was produced; and the time elapsed after the end of degassing until unloading and the
idle time,

The defects in the end product were due to deviations from the standard in the following four
characteristics of the polymer: conformity with specification, conformity with the All-Union State Standard GOST,
absence of non-cut-through areas (a characteristic of viscosity), and absence of foreign inclusions.

The similarity of the descriptions of the industrial conditions of synthesis was determined component by
component in the folowing way. The components of the description corresponding to a serial number of the
autoclave, the time of day, and the work-shift number were given random values. The similarities of the values of
these components were defined as follows:

x ¥ x=
xl\y={0. t ey

For those components of the description which took numeric values, the similarity was specified after the
entire set of possible values from the “similarity interval® was classified by experts. Within such intervals, the values



-
-
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Number of confirming exampies, n

Fig. 2

1

were considered similar; outside them they were different. More exactly, let L be the set of all similarity intervals
for a certain component j that takes numeric values.
In that case,

i, x6i.y61, IGL: .
‘/\-'f"{p. XEly yEk, IGL, RGL, 1ok k.

In this fashion, we specify similarities of values of the components representing the weight share of volatile
substances, acidity, coloration, downtime, and the time from the end of degassing to unjoading.

Each of the four polymer properties was investigated separately in the experiment. Each of the 253
situations was classified for each property as belonging to the class of positive or negative examples.

A large number of hypotheses was obtained by the "counterexample prohibition” rule (from 500 to 1500
for the individual polymer propertics).

The stability indices I, Iy were calculated for the hypotheses by a program written by Ivashko for IBM
PC AT computer in the Clanguage. The available memory (approximately 217 kB of free working memory) allows
the program to compute exact values for hypotheses with n < 16. The maximal computation time (for n = 15) was
10 sec (Inte! 80386 processor, 20 mHz). For bypotheses with large n, upper estimates were calculated in 10 sec
according to Theorem 5.5 and 5.6. However, these estimates differed little from 1. Thus, an adequate notion of
stability indices could be obtained only for n < 16, which was sufficient for this problem: few hypotheses had more
than 15 confirming examples.

On this experimental material we confirmed the notion (§4) of the growth of the values of Iy with
increasing n as a general proposition: in all the four characteristics, the value of I¢ averaged for all hypotheses either
increased monotonically or pased through several small segments of decrease. The value of I, was slightly greater
thar Iy for small n, and it became smaller for larger n (for the interval (3, 15)). Figure 2 represents a typical
behavior of the average values of L, It as a function of n (concerning hypotheses for the causes of absence of
non-cut-through areas). For all the eight hypotheses (concerning different properties), identified by experts as the
most meaningful ones, the values of integral and average stability indices were above average, which indicates a
good selectivity of these indices for this problem.

7. Other Possible Definitions of Stability

The notion of stability can be expressed by various stability indices. In certain circumstances, some may
be preferable to others, An analysis of these circumstances is an interesting subject in its own right. Here, we will
merely list some possibie other definitions of the indices of stability of a hypothesis <H, {X,, ..., X,}>:

1) "Middle layer*

Iq . Kniseven;
T

=l 2t ]

1 ) , Hnizodd;
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2) "Minimal covering’

lom=l; where j== min (g 0);
icn -1
3) "Maximal anticovering"

ol -]

Ie=1;, where j=2 max (fy=1);

4) Stability of prediction along the lines of reasoning in [17].

Let $* and S™ be the sets of initial examples, S® C 8 is the set of issues (ie., objects from S”, for which
the prediction must be made), P* and P~ are the sets of all (+)- and (-)-predictions obtained on the basis of all
bypotheses generated trom S* and S™. In that case, I is the share of all subsets of the set $*|JS™ for which the sets
of all predictions generated coincide with predictions obtained from the entire set of examples $*|JS™.

The author thanks V. X, Finn, M. V. Arapov, and O. G. Gorbachev for noting the connection between the
constructs introduced here and the ideas of nonparametric statistics and providing a brief proof of Lemnma 3.1, D.
P. Skvortsov for pointing out some inaccuracies in the original draft, and V. G. Ivashko for writing the program
of exact calculation of Ipand 1,
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