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a b s t r a c t

This paper addresses the important problem of efficiently mining numerical data with for-
mal concept analysis (FCA). Classically, the only way to apply FCA is to binarize the data,
thanks to a so-called scaling procedure. This may either involve loss of information, or pro-
duce large and dense binary data known as hard to process. In the context of gene expres-
sion data analysis, we propose and compare two FCA-based methods for mining numerical
data and we show that they are equivalent. The first one relies on a particular scaling,
encoding all possible intervals of attribute values, and uses standard FCA techniques. The
second one relies on pattern structures without a priori transformation, and is shown to
be more computationally efficient and to provide more readable results. Experiments with
real-world gene expression data are discussed and give a practical basis for the comparison
and evaluation of the methods.

� 2011 Published by Elsevier Inc.
1. Introduction

Numerous classification problems can be formalized by means of formal contexts. A context materializes a set of individ-
uals (called objects), a set of properties (called attributes), and a binary relation usually represented by a binary table relating
objects to attributes, where (g,m) = �(a cross) if the object g has the property m [1,9]. Considering a pair of mappings be-
tween sets of all subsets of objects and attributes, called Galois connection, it is possible to derive for each object g the set
of all attributes that apply to g. Similarly, it is possible to derive for each attribute m the set of all objects to which m applies.
As a consequence, one may classify within formal concepts a set of objects sharing the same maximal set of attributes, and
vice versa. Concepts are ordered within a lattice structure called concept lattice within the formal concept analysis (FCA)
framework [9]. This mathematical structure supports potential knowledge discovery in databases that benefits of an impor-
tant set of techniques for building, visualizing and interpreting concept lattices [9,20]. Concept lattices are represented by
diagrams giving nice visualization of classes of objects of a domain. At the same time, the edges of these diagrams give essen-
tial knowledge about objects, by giving association rules between attributes describing the objects [21]. FCA can also be used
for a number of purposes among which knowledge formalization and acquisition, ontology design, and information retrieval
[36,38].

In real-world applications, e.g. in biology or chemistry, one rarely obtains binary data directly, complex and heterogeneous
data involving numbers, graphs, intervals, etc., are more typical. To apply FCA-based methods to such data, the latter have to
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be binarized, i.e. scaled. Many types of scaling are known in FCA literature [9], however, they do not always suggest the most
efficient implementation right away, and there are situations where one would choose original data representation rather
than scaled data [8]. Although scaling allows one to apply FCA tools, it may dramatically increase the complexity of compu-
tation and representation, and make worse the visualization of results.

Instead of scaling, one may work directly with initial data, i.e. complex object descriptions, defining so-called similarity
operators which induce a semi-lattice on data descriptions. Several attempts were made for defining such semi-lattices on
sets of graphs [8,17,18,22] and logical formulas [5,7] (see also [10,37] for FCA extensions). Indeed, if one is able to order ob-
ject descriptions in complex data, e.g. with graph morphism when objects are described by labelled graphs, one may attempt
to directly build a concept lattice from such data. In [8], a general approach called pattern structures was proposed, which
allows one to apply standard FCA to any partially ordered data descriptions.

This paper addresses the problem of FCA-based classification of numerical data, where object descriptions are vectors of
numbers, with pattern structures and a particular similarity operator. We focus on gene expression data (GED), where gene
expression profiles represent the ‘‘behaviour” of genes in biological situations, and a situation corresponds to tissues at dif-
ferent time points or cellular loci (different organs, healthy or cancerous tissues, etc.). Genes with similar expression pro-
files are said to be co-expressed. It is now widely accepted that co-expressed genes interact together within the same
biological process [34]. GED analysis is an important task and an active area of research involving mainly data-mining
methods: clustering [14], biclustering [23,29]. FCA-based methods have been recently designed and applied in this domain
[4,15,26].

For analysing GEDs by means of FCA, one needs to build a formal context from a GED, attribute values have to be discret-
ized and intervals of entry values have to be considered as binary attributes, implying possible loss of actual data values [15].
In [9], interordinal scaling is defined and allows one to build a formal context that encodes all possible intervals of attributes
values, without loss of information. However this scaling produces large and dense binary data, which are hard to process
with existing FCA algorithms [20]. This is probably one of the reasons why this scaling has never been used for GED analysis.
By contrast, the formalism of pattern structures, defined in full compliance with the FCA framework in [8], allows one to
build a concept lattice without a priori scaling procedure. Accordingly, in this paper, we introduce an interval convexification
as a similarity operator for ordering intervals within a semi-lattice, i.e. by taking the convex hull of any arbitrary set of inter-
vals. However, this operation between complex descriptions of objects may be harder to process than classical set intersec-
tion and inclusion test after a scaling. Then, a challenging question arises for numerical data like GEDs: should one scale
numerical attributes?

To discuss this question, we have experimented with both approaches, comparing their computational efficiency, the
respective results and their representations. We show that both methods have equivalent outputs, but the method based
on pattern structures is more computationally efficient than that based on interordinal scaling, and provides better readable
and interpretable results.

The article is organized as follows. Firstly, gene expression data (GED) are presented in Section 2. Section 3 recalls the
basics of FCA and shows how to build a concept lattice from GED using interordinal scaling to represent value intervals.
An approach based on pattern structures for building an isomorphic lattice without transforming the data is detailed in Sec-
tion 4. Experiments with a real-world GED are discussed in Section 5, giving also a practical basis for the comparison of the
two methods. The conclusion suggests further research directions.
2. Gene expression data

Gene expression is the mechanism that produces a protein from a gene in two steps. Firstly transcription builds a copy of a
gene called mRNA which is then translated into a protein. This mechanism differs in different biological situations: for each
gene the concentration of mRNA and proteins depends on the current cell, time, etc. and reflects the behaviour of the gene.
Indeed, biological processes of a living cell are based on chemical reactions and interactions between proteins and mRNA.
Thus, it is important to measure and analyse mRNA and protein concentration to understand biological processes activated
in a cell.

Using microarray biotechnology, the concentration of mRNA is measured into a numerical value called gene expression
value, which characterizes the behaviour of a gene in a particular cell. Microarrays can monitor simultaneously the expres-
sion of a large number of genes, possibly the complete coding space of a genome. When several microarrays are considered,
the expression value of a gene is measured in multiple situations or environments, e.g. different cells, time points, cells
responding to particular environmental stresses, etc. This characterizes the behaviour of the gene w.r.t. all these situations
and is represented by a vector of expression values called a gene expression profile.

A gene expression data (GED) is generally described as a table with n rows corresponding to genes and m columns corre-
sponding to situations. A table entry is called an expression value. A row in the table denotes an expression profile associated to
a gene. For example, in Table 1, the expression value of g1 in the situation s1 is 5. The expression profile of the gene g1 is
denoted by the vector h5,7,6i. In this paper, we consider the NimbleGen Systems Oligonucleotide Arrays technology1:
expression values range from 0 (not expressed) to 65535 (highly expressed).
1 Details on this biotechnology can be found at www.nimblegen.com.

http://www.nimblegen.com


Table 1
Gene expression data.

s1 s2 s3

g1 5 7 6
g2 6 8 4
g3 4 8 5
g4 4 9 8
g5 5 8 5
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Stating that co-expressed genes interact together within the same biological process [34], various data-mining methods
have applied to GEDs, among which clustering, biclustering and FCA-based methods (see related work in section 6). In the
following, we use the FCA formalism to mine GEDs.
3. Mining GEDs by means of interordinal scaling

This section starts with classical definitions of FCA. Then a particular scaling for representing value intervals from numer-
ical datasets is presented and illustrated for lattice-based classification of GEDs.

3.1. FCA: main definitions

Here we use standard definitions from [9]. Let G and M be arbitrary sets and I # G �M be an arbitrary binary relation
between G and M. The triple (G,M, I) is called a formal context. Each g 2 G is interpreted as an object, each m 2M is inter-
preted as an attribute. The fact (g,m) 2 I is interpreted as ‘‘g has attribute m”. The two following derivation operators (�)0:
A0 ¼ fm 2 Mj8g 2 A : gImg for A # G;

B0 ¼ fg 2 Gj8m 2 B : gImg for B # M;
define a Galois connection between the powersets of G and M. The operators {(�)0, (�)0} put in relation elements of the lattices
(2G, # ) of objects and (2M, # ) of attributes and vice versa. A Galois connection induces a closure operator (�)00 and realizes an
one-to-one correspondence between all closed sets of objects and all closed sets of attributes, called concept extents and
intents. For A # G, B # M, a pair (A,B) such that A0 = B and B0 = A, is called a (formal) concept. Concepts are partially ordered
by ðA1;B1Þ 6 ðA2;B2Þ () A1 # A2ð () B2 # B1Þ. With respect to this partial order, the set of all formal concepts forms a com-
plete lattice called the concept lattice of the formal context (G,M, I). For a concept (A,B) the set A is called the extent and the set
B the intent of the concept.

3.2. Classical scalings for GEDs

To be represented in the form of a formal context numerical data require transformation called conceptual scaling. For
each attribute, a scale is defined in accordance with the values of the attribute. The choice of a scale depends on data and
research goals, and affects the size and interpretation of the resulting concept lattice.

Usually to apply FCA in GED analysis, an l-cut scaling is operated by using a single threshold l on expression values deter-
mined for each object [26,28,29]. Expression values greater than this threshold are said to be over-expressed and encoded by
1, otherwise by 0. Then formal concepts represent sets of genes simultaneously over-expressed.

In [15], a generalization with an interval-based scaling of numerical data is proposed, where interval number and size
were chosen by experts. Given a set of genes G, a set of situations S and a set of ordered intervals T, (g, (s, t)) 2 I, where
g 2 G, s 2 S, t 2 T and I a binary relation, means that the expression value of the gene g is the interval of index t for the sit-
uation s. Formal concepts of the context (G,S � T, I) represent groups of genes whose expression values are in same intervals
for a subset of situations (maybe for all situations). However these intervals are hard to determine adequately a priori.

3.3. Interordinal scaling for GEDs

Interordinal scaling defined in [9] can help describing all value intervals without loss of information. Let G be a set of genes,
S a set of situations, W � R a set of expression values and I1 a ternary relation defined on the Cartesian product G � S �W.
The fact (g,s,w) 2 I1 or simply g(s) = w means that gene g has expression value w for situation s (see for example Table 1).
K1 ¼ ðG; S;W; I1Þ is called a many-valued context representing a GED. The objective is to extract formal concepts (A,B) from
K1, where A # G is a subset of genes sharing ‘‘similar values” of W, i.e. lying in a same interval. An appropriate binarization
(scaling) technique is used to build a formal context K2 ¼ ðG; S2; I2Þ called derived context of K1.

A scale is a formal context (cross-table), objects being the attributes of K1 and attributes being the derived ones of K2. As
attributes do not take necessarily the same values, each of them is scaled separately. Let Ws # W be the set of all values of
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the attribute s. The following interordinal scale (see p. 42 in [9]) can be used to represent all possible intervals of attribute
values:
Table 2
Scale IN

4
5
6

Table 3
K2 ¼ ðG

g1

g2

g3

g4

g5
IWs ¼ ðWs;Ws;6ÞjðWs;Ws;PÞ:
The operation of apposition of two contexts with identical sets of objects, denoted by j, returns the context with the same set
of objects Ws and the set of attributes being the disjoint union of attribute sets of the original contexts. In our case, this oper-
ation is applied to two contexts (Ws,Ws,6) and (Ws,Ws,P). As Ws is composed of real numbers, the relations 6 and P are
natural. Table 2 gives an example for Ws1 ¼ f4;5;6g. The intents given by the interordinal scale are all possible value
intervals.

Once a scale is chosen, conceptual scaling replaces each many-valued attribute of K1 with a set of binary attributes,
resulting in the context K2. With interordinal scaling, each many-valued attribute s is replaced by 2�jWsj binary attributes
with names ‘‘s 6w” and ‘‘s P w”, for all w 2Ws. For example, s1 is replaced by {s1 6 4,s1 6 5,s1 6 6,s1 P 4,s1 P 5,s1 P 6}. De-
rived context K2 ¼ ðG; S2; I2Þ is given in Table 3 for the attribute s1 only. This transformation is applied without loss of infor-
mation: the many-valued context can easily be reconstructed from the formal context. For example, derived attributes for
(g1,s1,5) are s1 6 5, s1 6 6, s1 P 4, s1 P 5. The unique value in Ws1 respecting these predicates is 5 which is the original value.

The choice of an algorithm to build the concept lattice depends on the size and density of the formal context to process
(see Section 4.6). Density of a formal context (G,M, I) is defined as the proportion of elements of I w.r.t. the size of the Carte-
sian product G �M, i.e. density d = jIj/(jGj � jMj). In the case of interordinal scaling, density of derived context K2 is

d ¼
Pi6p

i¼1
ðjWi jþ1Þ

2�
Pi6p

i¼1
jWi j

, where p is the number of attributes in K1. When jWj grows, d tends towards 50%. Moreover, the number
:¼ ðN;N;6ÞjðN;N;PÞ for s1, N = {4,5,6}.

s1 6 4 s1 6 5 s1 6 6 s1 P 4 s1 P 5 s1 P 6

� � � �
� � � �

� � � �

Fig. 1. Concept lattice of formal context K2 ¼ ðG; S; I2Þ drawn with the Concept Explorer software (http://conexp.sourceforge.net/).

; S; I2Þ for the attribute s1.

s1 6 4 s1 6 5 s1 6 6 s1 P 4 s1 P 5 s1 P 6

� � � �
� � � �

� � � �
� � � �

� � � �

http://conexp.sourceforge.net/
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of derived attributes is 2 �
Pi6p

i¼1jWij and jg0j = jWj + 1 for all g 2 G. This makes the derived contexts dense, large and difficult to
process. For comparison, density of binary data in [29] does not exceed 6% and the number of derived attributes remains the
same after scaling. As pointed in Section 4.6, these binary data show better computational properties, but biases are
introduced.

Let us now consider the concept lattice of K2 given in Fig. 1. Concept extents near the Bottom concept contain a few genes,
since the corresponding intents are related to the smallest intervals. The extent of the Top concept contains all genes and its
intent corresponds to intervals of maximal size. The higher a concept lies in the diagram, the larger is the interval corre-
sponding to its intent. Concepts near the Top are not interesting: they allow almost all possible values of attributes. The
problem of selecting the best concepts in GED analysis is addressed in Subsection 5.3.
4. Mining GEDs by means of pattern structures

4.1. Introducing pattern structures

In this section, we present an alternative to scaling when a context includes many-valued attributes. This alternative is
based on the idea of pattern structures [8] which was motivated by research on learning with labelled graphs and other com-
plex descriptions [17,18].

Intuitively, the similarity of two sets of labelled graphs X and Y, denoted by X u Y, is given by the maximal common sub-
graphs of graphs from X and Y. Then a graph pattern may be defined as a set of graphs X such that X u X = X, i.e. X is ‘‘maximal”
w.r.t. the similarity operation. It is easily seen that the operation u is idempotent, associative and commutative. The simi-
larity operation u on sets of graphs is a sort of ‘‘attribute sharing”, as in the binary case, where objects in extent share
the maximal set of attributes in the corresponding intent. Denote by D the set of all graph patterns, then (D,u) is a semi-lat-
tice with infimum (meet) operator u. A natural subsumption order on graph patterns is given by X v Y, X u Y = X.

More generally, a pattern structure is a triple ðG; ðD;uÞ; dÞ where G is a set of objects, ðD;uÞ is a meet-semi-lattice of object
descriptions or patterns, and d : G! D is a mapping providing any object g 2 G with a description d 2 (D,u). As (D,u) or equiv-
alently (D,v) are semi-lattices, the following Galois connection, denoted by ð�Þ�; ð�Þ�

n o
, between ð2G; # Þ and ðD;vÞ gives rise

to a complete lattice called the pattern concept lattice of (G, (D,u),d) [8].
A� ¼ ug2AdðgÞ for A # G;

d� ¼ fg 2 Gjd v dðgÞg for d 2 ðD;uÞ:
The first derivation operator takes a set of objects and returns a maximal description (pattern) shared by all objects. The sec-
ond derivation operator takes a description and returns the maximal set of objects sharing this description.

Pattern concepts of (G, (D,u),d) are pairs of the form (A,d), A # G, d 2 (D,u), such that Ah = d and A = dh. For a pattern con-
cept (A,d) the component d is called a pattern intent and is a description of all objects in A, called pattern extent. For a pattern
structure (G, (D,u),d), a pattern d 2 (D,u) is closed if dhh = d. A set of objects A # G is closed if Ahh = A. Obviously, pattern
extents and intents are closed. When partially ordered by (A1,d1) 6 (A2,d2), A1 # A2(, d2 v d1), the set of all pattern con-
cepts forms a complete lattice called a pattern concept lattice.
4.2. Intervals are patterns

To define a semi-lattice operation u for intervals that would be analogous to the set-theoretic intersection or meet oper-
ator on sets of graphs, one should realize that ‘‘similarity” between two real numbers (between two intervals) may be ex-
pressed in the fact that they lie within some (larger) interval, this interval being the smallest interval containing both two.

Then, we choose to define the meet of two intervals [a1,b1] and [a2,b2], with a1; b1; a2; b2 2 R, as follows:
½a1; b1� u ½a2; b2� ¼ ½minða1; a2Þ;maxðb1; b2Þ�:
This operation can be viewed as a convexification of its arguments, as it returns the convex hull of two intervals. The choice of
this operator seems natural to have a more general description when considering more objects, which would not be the case
if considering a classical interval intersection as attribute values are numbers. The u operator is idempotent, commutative,
and associative. This means that the meet of several intervals is the smallest interval containing all intervals. Then, interval
subsumption and interval inclusion are related as follows:
½a1; b1� v ½a2; b2� () ½a1; b1� u ½a2; b2� ¼ ½a1; b1� () ½minða1; a2Þ;maxðb1; b2Þ� ¼ ½a1; b1�
() a1 6 a2 and b1 P b2 () ½a1; b1� � ½a2; b2�:
The definition of u implies that smaller intervals subsume larger intervals that contain them. For example, with
D ¼ f½4;4�; ½5;5�; ½6;6�; ½4;5�; ½5;6�; ½4;6�g, the meet-semi-lattice (D,u) is given in Fig. 2. The interval labeling a node is the meet
of all intervals labeling its ascending nodes, e.g. [4,5] = [4,4] u [5,5], and is also subsumed by these intervals, e.g.
[4,5] v [5,5] and [4,5] v [4,4].



Fig. 2. Meet-semi-lattice ðD;uÞ with D ¼ f½4;4�; ½5;5�; ½6;6�; ½4;5�; ½5;6�; ½4;6�g.
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We have shown how intervals can be seen as patterns. Now we can define a pattern structure where each object is de-
scribed by an interval. We show in the following how to generalize the process when considering vectors of intervals. Fur-
thermore, this is exactly what we need for analysing GED where gene expression profiles are vectors of numbers (and [a,a] is
an interval for any a 2 R).
4.3. Interval vectors are patterns

We call an interval vector a p-dimensional vector of intervals. When e and f are vectors of p intervals, we write
e = h[ai,bi]ii2[1,p] and f = h[ci,di]ii2[1,p]. The similarity operation u is defined by the meet of corresponding components for vec-
tor of the same size (knowing that the order of the components is canonical):
e u f ¼ h½ai; bi�ii2½1;p� u h½ci; di�ii2½1;p� () e u f ¼ h½ai; bi� u ½ci;di�ii2½1;p�:
Therefore, interval vectors are partially ordered by:
e v f () h½ai; bi�ii2½1;p� v h½ci; di�ii2½1;p� () ½ai; bi� v ½ci;di�; 8i 2 ½1;p�; i 2 ½1; p�;
meaning that each interval [ai,bi] of e is subsumed by the corresponding interval [ci,di] of f. For example,
h[2,4], [2,6]i v h[4,4], [3,4]i as [2,4] v [4,4] and [2,6] v [3,4].

4.4. Mining a GED as a pattern structure

GED in Table 1 can be formalized as a pattern structure (G, (D,u),d) where G = {g1, . . . ,g5} and D is a set of interval vectors
or three-dimensional vectors, where each component corresponds to an attribute of the table. For example,
d(g1) = h[5,5], [7,7], [6,6]i, where [a,a] stands for any a 2 R. When A # G is a set of objects and d 2 (D,u) is an interval vector,
Ah returns an interval vector composed, for each dimension, of the smallest interval containing all intervals in the descrip-
tion of each object in A, i.e. their convex hull. On the other hand, dh returns the set of objects being described for each dimen-
sion by an interval included in the corresponding interval of d.

For example, with data of Table 1, we have:
fg1; g2g
� ¼ ug2fg1 ;g2gdðgÞ ¼ dðg1Þ u dðg2Þ ¼ h½5;5�; ½7;7�; ½6;6�i u h½6;6�; ½8;8�; ½4;4�i
¼ h½5;5� u ½6;6�; ½7;7� u ½8;8�; ½6;6� u ½4;4�i ¼ h½5;6�; ½7;8�; ½4;6�i;
h½5;6�; ½7;8�; ½4;6�i� ¼ fg 2 Gjh½5;6�; ½7;8�; ½4;6�i v dðgÞg ¼ fg1; g2; g5g:
Obviously, g1 and g2 belong to h[5,6], [7,8], [4,6]ih. g5 also belongs to this set because h[5,6], [7,8], [4,6]i v d(g5).
Then, the pair (A,d) = ({g1,g2,g5},h[5,6], [7,8], [4,6]i) is a pattern concept meaning that Ah = d and A = dh. The set of all pat-

tern concepts gives rise to a pattern concept lattice (see Fig. 3).

4.5. Concept lattice and pattern concept lattice

The following proposition establishes an isomorphism between the concept lattice of KI with the relation
IWs ¼ ðWs;Ws;6ÞjðWs;Ws;PÞ, resulting from the interordinal scaling as defined in Section 3.3, and the pattern concept lat-
tice of (G, (D,u),d).

Proposition 1. Let A # G, then statements 1 and 2 are equivalent:

1. A is an extent of the pattern structure (G, (D,u),d) and A� ¼ h mi; �mi½ �ii2½1;p�, where mi and �mi, respectively, denote the minimum
and maximum of values of the objects in A for the ith attribute.

2. A is a concept extent of the context KI so that for all i 2 [1,p] mi is the largest number n such that the attribute si P n is in A0 and
�mi is the smallest number n such that the attribute si 6 n is in A0.



Fig. 3. Pattern concept lattice of pattern structure from Table 1.
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Proof. 1 ? 2 Let A # G be a pattern extent. Given di(g) the mapping that returns the ith interval of the vector describing
object g. Since A� ¼ h mi; �mi½ �ii2½1;p�, for every object g 2 A one has mi 6 diðgÞ 6 �mi and there are objects g1, g2 2 A such that
di(g1) = mi, diðg1Þ ¼ �mi. Hence, in context KI one has
A0 ¼ [i2½1;p� si P nmin; . . . ; si P n1; si 6 n2; . . . ; si 6 nmaxf g;
where
nmin � � � � � n1 6 n2 � � � � � nmax;
and n1 = mi, n2 ¼ �mi. Hence, mi is the largest number n such that the attribute si P n is in A0 and �mi is the smallest number n
such that the attribute si 6 n is in A0. Suppose that A is not an extent of KI. Hence, A � A00 and there is g 2 A00nA and g0 � A0. This
means that for all i mi 6 diðgÞ 6 �mi. Therefore, g 2 Ahh and A – Ahh, a contradiction. The proof 2 ? 1 is similar. h

Consider an example of pattern concept: ({g1,g2,g5},h[5,6], [7,8], [4,6]i), the equivalent concept of the interordinally
scaled context is ({g1,g2,g5}, {s1 6 6,s1 P 4,s1 P 5,s2 P 7,s2 6 8,s2 6 9,s3 6 6,s3 6 8,s3 P 4}). Pattern intents are concise rep-
resentations of concept intents. Therefore, concept intents are long descriptions, which can be turned to pattern intents by a
simple syntactic post-processing.

4.6. Computation

Many algorithms for generating formal concepts from a formal context are compared in [20]. Experimental results high-
light Norris, CloseByOne and NextClosure algorithms as the best algorithms when the context is dense and large, which is the
case of interordinally derived formal contexts (shown in Section 3). Worst-case upper bound time complexity of the three
algorithms for computing a set of formal concepts from a formal context G, M, I is O(jGj2 � jMj � jLj) with G the set of genes, M
the set of attributes (here the set of attributes of the scaled context), and L the set of generated concepts.

To compute interval pattern concepts, the selected FCA algorithms Norris, CloseByOne, and NextClosure, need only slight
modifications. The worst-case time complexity of computing the set of interval patterns is O(jGj2�p�jLj), where p is the num-
ber of components in interval vectors, i.e. the number of numerical attributes in the original numerical data.

In both cases, the sets G and L are the same, thus relative efficiency of processing both data representations depends on
the number of different attribute values in the original many-valued numerical context.

We now propose an adaptation of the CloseByOne algorithm for processing pattern structures such as vectors of intervals.
This algorithm is the most efficient in our case (see Section 5) and the original pseudo-code for processing a formal context is
given in Algorithms 1 and 2. It generates all concepts in a bottom-up way (from minimal to maximal extents). It considers
objects one by one starting from the minimal one w.r.t. a linear order < on G, e.g. a lexical order on object labels. Then it adds
the next object w.r.t < and applies the closure operator (�)00 to generate the next concept. Testing < on the obtained extent
helps to easily determine if a concept extent was already generated. Finally, recursiveness of the algorithm induces a tree
structure on the set of all concepts. More details on this algorithm can be found in [20,33]. To adapt this algorithm for pattern
structures, one has to replace each call to a (�)0 operator by a call to the corresponding (�)h operator. Then, computing Ah for a
set A # G is realized by taking min (respectively max) of all left (respectively right) limits of the intervals of each object



1996 M. Kaytoue et al. / Information Sciences 181 (2011) 1989–2001
description. For a pattern d 2 (D,u), dh is computed by testing for each object g 2 G if each interval of its description is in-
cluded in the corresponding interval of d.
2

3

Algorithm 1 Close by one
1:
www.ncbi.nlm.n
Available at http
L = ;

2:
 for each g 2 G

3:
 process ({g},g, (g0,g0))

4:
 L is the concept set
Algorithm 2 Process (A,g, (C,D)) with C = A0 0 and D = A0 and < the lexical order on object names
if {hjh 2 CnA and h < g} = ; then

2:
 L = L [ {(C,D)}
for each f 2 {hjh 2 GnC and g < h}

4:
 Z = C [ {f}
Y = D \ {f0}

6:
 X = Y0
process (Z, f, (X,Y))

8:
 end if
By contrast, it is not that simple to adapt a depth-first search algorithm such as Charm that searches for closed sets [39].
For this algorithm, the binary representation of descriptions and their storage of particular data structures are essential.

5. Biological experiments

This section shows how pattern structures are used for extracting biological information from a real-world GED and how
they outperform interordinally scaled contexts in terms of processing time.

5.1. A real-world GED

Biologists at the UMR IAM (INRA) study interactions between fungi and trees. They published the complete genome se-
quence of the fungus Laccaria bicolor [24]. This fungus lives in symbiosis with many trees of boreal and temperate forests.
The fungus forms a mixed organ on tree roots and is able to exchange nutrients with its host in a specific symbiotic structure
called ectomycorrhiza, contributing to a better tree growth and enhancing forest productivity. On the other hand, the plant
repays its symbiotic partner by providing carbohydrates, allowing the fungus to complete its biological cycle by producing
fruit-bodies (e.g. mushrooms). It is thus of major interest to understand how the symbiosis performs at the cellular level. The
genome sequence of Laccaria bicolor contains more than 20,000 genes [24]. The study of their expression in various biological
situations helps to understand their roles and functions in the biology of the fungus. Microarray techniques enable to com-
pare expression values of all the genes between contrasted situations like free-living cells of the fungus (i.e. mycelium), cells
engaged in the symbiotic association (i.e. ectomycorrhiza), and specialized cells forming the fruit-body structure (i.e. mush-
room). Laccaria bicolor gene expression data is available at the Gene Expression Omnibus of the National Center for Biotech-
nology Information (NCBI).2 It is composed of 22,294 genes in lines and five various biological situations in columns,
reflecting cells of the organism in various stages of its biological cycle, i.e. free-living mycelium (situation FLM), symbiotic
tissues (situations MP and MD) or fruiting bodies (situations FBe and FBl).

5.2. Preprocessing the data

First, a selection from the 22,294 genes is processed. Indeed, a gene that shows similar expression values in all situations
presents less interest to the biologist than a gene with high differences of expression. One gene with a constant expression
does not indicate a particular contribution to a cellular process (although its expression per se can be sufficient to participate
to the process). Besides, significant changes in gene expression may reflect a role in a biological process and such genes help
the biologist to draw hypotheses.

Filtering the genes consists in removing genes having no significant difference of expression across all situations. For each
couple of situation, a t-test is performed and a p-value is attributed. If the p-value >0.05 (cut-off classically applied in biol-
ogy) for all couples of situations then the current gene is removed from the dataset. The CyberT tool3 was used to filter the
ih.gov/geo/ as series GSE9784.
://cybert.microarray.ics.uci.edu.

http://www.ncbi.nlm.nih.gov/geo/
http://cybert.microarray.ics.uci.edu
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dataset and obtain 11,930 genes. Another classical pre-processing in GED analysis is to transform expression values using log2.
Indeed, it allows the capture of small expression values into intervals that should be larger for high expression values. Finally,
for making computation possible, a last pre-processing consists in rounding log2 expression values to one digit after the comma,
recalling that the more there are different attribute values, the more they are concepts.

5.3. Methodology of mining GED

Before extracting concepts from the GED defined above, we should remark that, given the definition of u as a convexifica-
tion of intervals, the following property of an (interval vector) pattern concept lattice is obvious. The lowest concepts w.r.t. 6
are generally composed of pattern extents with few objects and ‘‘precise” descriptions, i.e. whose pattern intent is composed
of ‘‘small” intervals. Then, the higher a concept is, the more elements there are in its extent, and the more intervals of its intent
are large. For example, the Top concept, i.e. the highest concept w.r.t. 6, has an extent containing all objects, and an intent
composed of the largest intervals subsumed by all respective intervals of the data. In the example, Top =
(G,h[4,6], [7,9], [4,8]i). However, the main goal of GED analysis is extracting homogeneous groups of genes, i.e. groups of genes
having similar expression values. Therefore, descriptions of homogeneous groups should be composed of intervals with
‘‘small” sizes where size([a,b]) = b � a.

Consider a parameter maxsize that specifies the maximal admissible size of any interval composing an interval vector. Then
pattern concepts of interest have pattern intents d = h[ai,bi]ii2[1,p] 2 (D,u) satisfying the constraint: $i 2 [1,p](bi � ai) 6 max-
size, for any a; b 2 R. A stronger constraint would be "i 2 [1,p](bi � ai) 6maxsize, meaning that only concepts representing
genes with ‘‘similar” expression values in at least one or all biological situations are retained. Therefore, two values are said
to be similar if their difference does not exceed maxsize. Since both constraints are monotone (if an intent does not satisfy it,
then a subsumed intent does not satisfy it either), the subsets of patterns satisfying any of these constraints are order ideals
(w.r.t. subsumption on intervalsv) of the lattice of pattern intents. In terms of computation, this means that only some lower
part of the pattern lattice is computed, with patterns satisfying the constraints. CloseByOne can easily consider these con-
straints as it generates concepts from minimal to maximal extents.

The CloseByOne algorithm was run on the resulting pattern structure with maxsize = 0.35. A concept is retained if it de-
scribes at least seven co-expressed genes in at least five situations, i.e. the intent has at least five intervals whose size do
not exceed the maxsize parameter. Indeed, let us recall that concepts near the Bottom, i.e. in the lowest levels of the concept
lattice, are composed of a few genes described by small intervals. Processing time was about 2 min and returns 2,120 con-
cepts (hardware details are given in next section).

5.4. Biological results and interpretation

Here we present two extracted patterns selected as grouping genes with high expression levels in the fruit-bodies situ-
ations, whereas their expression remains similar between the mycelium and symbiosis situations (Fig. 4). These patterns
have been extracted from the whole list of 2,120 patterns for the following characteristic: in both cases, the expression levels
measured are about two times higher in the fruit-body compared to the other situations. It indicates that these genes cor-
respond to biological functions of importance at this stage. The expression measured in the mycelium and symbiosis situ-
ations tends to indicate that these genes are also involved in general cellular processes as they are already expressed in
all situations.

The pattern in Fig. 4 (left) contains seven genes, of which only three possess a putative cellular function assignment based
on similarity in international gene databases at NCBI. Interestingly, these genes all encode enzymes involved in distinct met-
abolic pathways. A gene encodes a 1-pyrroline-5-carboxylate dehydrogenase which is involved in amino-acid metabolism,
another corresponds to an acyl-coA dehydrogenase, involved in fatty acid metabolism and a last gene encodes a transketol-
ase, an enzyme involved in the pentose phosphate pathway of carbohydrate metabolism. All these metabolic functions are
Fig. 4. Graphical visualization of two extracted concepts. X-axis is composed of situations, Y-axis is the expression values axis. Each line denotes the
expression profile of a gene in the concept extent. Values are taken before the logarithmic transformation.
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essential for the fungus and reflect that the fruit-body is a highly active tissue. The fruit-body is a specific fungal organ that
differentiate in order to produce spores and that further ensure spore dispersal in nature [30]. Previous gene expression anal-
yses of the fruit-body development conducted in the ectomycorrhizal fungus Tuber borchii also reported the strong induction
of several genes involved in carbon and nitrogen metabolisms [13] as well as in lipid metabolism [32]. The present results are
consistent with these observations and supports an important mobilization of nutrient sources from the mycelium to the
fruit-body. It seems obvious that the primary metabolism requires to be adapted to use these sources in order to properly
build spores and provide spore-forming cells with nutrients [30].

The pattern on Fig. 4 (right) also contains seven genes, of which only three possess a putative biological function. Inter-
estingly, one of these genes encodes one pseudouridylate synthase, an enzyme involved in nucleotide metabolism that might
also be involved in remobilization of fungal components from the mycelium to spore-forming cells and spores. The two other
genes encode a cytoskeleton protein (actin) and a protein related to autophagy (autophagy-related 10 protein), a process that
can contribute to the recycling of cellular material in developing tissues. Both functions participate in re-constructive cellu-
lar processes [30], which is consistent with the involvement of metabolic enzymes in remobilization of fungal resources to-
wards the new organ in development.

Analysis of these two patterns that present a high expression level in the fruit-body situation is highly informative,
confirms existing knowledge in the field and highlights the importance of remobilization in the developing organ. These
co-expressed genes share related roles in a particular process. This could indicate that they are under the control of com-
mon regulators of gene expression. Interestingly, these patterns also contained a total of eight genes of unknown func-
tions, i.e. for which no functional assignment was possible in international gene databases. There were four genes
encoding hypothetical proteins with a homology in databases but no detailed function and 4 genes not previously de-
scribed in fungi or other organism and which are considered specific to Laccaria bicolor. There are about 30% of such
genes specific to this fungus and these may play specific roles in the biology of this soil fungus [24]. All these genes show
consistent profiles with those encoding metabolic functions. Thus, these genes are interesting investigation leads as they
may contain new enzymes not previously described of the pathways or eventual regulator of the cellular process. Alto-
gether, these results contribute to a better understanding of the molecular processes underlying the fruit-body
development.

As stated earlier, the expression of these genes was not specific to this biological situation. Their expression levels was
already high in the mycelium and the symbiotic tissue indicating that these processes are essential not only to the fruit-body
development but also to general cellular processes as previously described in expression studies of the tree-fungus symbiosis
development [31].
5.5. Performance and efficiency study

Here we compare time performance of three algorithms for mining pattern structures of interval vectors (Section 4)
and equivalent interordinally scaled contexts (Section 3). We have implemented the Norris, NextClosure, and CloseByOne
algorithms, for both processing formal contexts and pattern structures. We have added the Charm algorithm [12] that
extracts closed itemsets, i.e. concept intents in a formal context. FCA algorithms have been implemented in original ver-
sions as described in [20]. These algorithms are run within the Coron System [35].4 All implementations are in Java: sets
of objects and binary attributes are described with the BitSet class and interval descriptions with standard double arrays.
The experiments were carried out on an Intel Core2 Quad CPU 2.40 Ghz machine with 4 GB RAM running under Ubuntu
8.10.

We began to compare algorithms on the data presented in biological experiments, i.e. from a many-valued context
(G,S,W, I1) where jGj = 10,225 and jSj = 5. Even by reducing the number of attribute values, computation is infeasible. Indeed
we do not consider here constraints like the maximal interval size. Then we randomly selected samples of the data, by
increasing the number of objects. As attribute values are real numbers with about five digits after the comma, the size of
W is large. In the worst-case, jWj = jGj � jSj, i.e. each attribute value is different in the dataset. This implies very large formal
contexts to process and a large number of concepts. The execution times for this case are shown in Table 4. The Norris algo-
rithm shows the best results in formal contexts, meeting conclusions of [20] for large and dense contexts. However, Close-
ByOne performs better for pattern structures, and most importantly is the only one able to compute a very large collection of
concepts. When strongly reducing the size of W by rounding attribute values to the integer, i.e. jWj 	 jGj � jSj, the Charm
algorithm outperforms the others. The Norris algorithm is still the best FCA algorithm in formal contexts and CloseByOne
is the best in pattern structures (see Table 5).

To sum up, we can say the following: When the number of different attribute values w.r.t. jGj � jSj is low, computing con-
cepts from formal contexts is the most efficient solution. For large datasets with many different attribute values, it is much
more efficient to compute with interval pattern structures. One explanation is that for formal concepts the concept intent
representation is a bit string whose length increases with the growth of jWj. Object descriptions in pattern structure are ar-
rays of constant size w.r.t. jWj.
4 The Coron System is freely available at http://coron.loria.fr and also integrates a tool for applying interordinal scaling to numerical data.

http://coron.loria.fr


Table 5
Generation time in both data representations. Attribute values are rounded.

Datasets
jGj 25 50 75 100 125 150 200
jWj 34 37 44 53 58 62 66

Generation time for formal contexts (in ms)
Density (%) 51.47 51.35 51.14 50.94 50.86 50.81 50.76
Charm 55 154 184 243 394 936 1856
Next closure 100 933 3333 22,973 30,854 78,790 593,416
Norris 38 320 861 2697 5954 15,359 46,719
Close by one 84 483 2424 8452 22,173 59,070 227,432

Generation time for pattern structures (in ms)
Next closure 59 372 1924 6215 15,417 42,209 143,501
Norris 44 479 2602 7243 16,257 40,991 109,814
Close by one 40 220 1084 3832 9289 23,989 89,804

Concept set L
jLj 1165 5928 23,962 48,176 73,463 163,316 252,515

Table 4
Generation time in both data representations (no projection).

Datasets
jGj 10 20 30 40 50 75 100
jWj 50 100 150 199 249 374 252
Density (%) 51.00 50.50 50.33 50.25 50.20 50.13 50.20

Generation time in formal contexts (in ms)
Charm 60 916 16,469 N/A N/A N/A N/A
Next closure 5 145 1299 12,569 68,969 N/A N/A
Norris 2 90 609 5180 28,831 N/A N/A
Close by one 3 106 906 7944 41,238 N/A N/A

Generation time in pattern structures (in ms)
Next closure 6 100 763 5821 35,197 N/A N/A
Norris 6 172 1982 15,522 83,837 N/A N/A
Close by one 2 85 585 3094 18,320 1,004,073 2,288,200

Concept set L
jLj 280 9587 78,173 455,008 1,857,725 40,325,176 64,571,385
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6. Related work

Numerous methods have been designed since the end of 90’s allowing the discovery and description of biological pro-
cesses in living cells [34]. These methods may be divided into three categories: clustering, biclustering, and FCA-based meth-
ods. Units extracted by these methods, i.e. clusters, biclusters, and formal concepts, characterize biological processes. These
methods are unsupervised or supervised by domain knowledge. We restrict our discussion to unsupervised methods, as
there is generally a few knowledge units available when dealing with GEDs of species whose genome was very recently se-
quenced (this is the case of the plant species Laccaria bicolor considered in Section 5). We also do not discuss evolutionary
computation of clusters, see e.g. [11].

Clustering methods group genes into clusters w.r.t. a global similarity, e.g. based on Euclidean distance, of their expression
profiles. Here, ‘‘global” means that the similarity is computed for whole numerical vectors representing gene expression pro-
files. Then, clustering may fail to detect biological processes activated in some situations only [23].

To overcome this limitation, biclustering algorithms have been suggested [6,23]. Biclusters in a GED are defined as groups
of genes having similar expression values in a same group of situations, but not necessarily all. However, it is known that
most of the genes are involved in several processes [34], i.e. biclusters should overlap. Then, it becomes difficult to extract
homogeneous biclusters based for example on subtables of a GED and respecting given constraints as their number grows
exponentially. If constraints are more ‘‘heuristic-like”, then interesting patterns may be missed [4]. This is one of the reasons
why only a few biclustering algorithms allow overlapping of biclusters [23]. Our approach is close to that described in [27]
where descriptions of gene clusters are sought as interval vectors of gene expression values. The authors of [27], however, do
not use the semi-lattice on intervals for systematically generating all interesting clusters of this kind, but adhere to local
optimum probabilistic approach by randomly generating a maximal gene expression bicluster at each iteration of a greedy
algorithm that constructs a cover of the set of all genes. The authors of [27] do not compare their approach to equivalent
approaches that use binarization of numerical values.

For a binary object-attribute table, e.g. Table 2, a bi-cluster is a set of objects having the same, or almost the same, set of
attributes. In [29], authors proposed the Bi-Max biclustering algorithm, which extracts inclusion-maximal biclusters as



2000 M. Kaytoue et al. / Information Sciences 181 (2011) 1989–2001
follows. Given a set G of genes, a set M of situations, and a binary table {egm}g2G, m2M such that egm = 1 or egm = 0, the pair
(A,B) 2 2G � 2M is called an inclusion-maximal bicluster if and only if (1) 8a 2 A; b 2 B : eab ¼ 1 and (2) 9= ðC;DÞ 2 2G � 2M

with (a) 8c 2 C; 8d 2 D : ecd ¼ 1 and (b) A # C ^ B # D ^ ðC;DÞ–ðA;BÞ. Stated in this way, a bicluster is nothing else than a for-
mal concept.

Formal concept analysis (FCA) can be viewed as a kind of binary biclustering method. It provides means for extracting
patterns from a binary relation, namely formal concepts. In application to GED analysis, concept extents are maximal sets
of genes related to a common maximal set of situations (not necessarily all). The ordering of concepts among a complete
lattice makes overlapping of concepts natural. Then a complete enumeration of patterns respecting some constraints like
closure and minimal frequency is possible [4,15]. Indeed, the subsets of patterns satisfying these constraints is an order ideal
of the lattice of patterns. Actually, in this paper, we payed particular attention to scaling problems, such as boundary prob-
lems, and we proposed monotone constraints to retain best concepts for a GED analysis.
7. Conclusion

In this paper, we addressed the problem of efficiently mining numerical data with techniques based on formal concept
analysis (FCA). The standard way of dealing with numerical data in FCA is based on scaling. However, the data may be scaled
in a lot of different ways leading to different results and interpretations. Most importantly, this usually leads either to loss of
information and precision, or to huge and dense binary datasets difficult to process.

In the context of gene expression data analysis, we have compared two mathematically equivalent methods for process-
ing numerical data. The first one uses interordinal scaling and classical FCA algorithms. It encodes all possible intervals of
attribute values in a formal context that is processed with classical FCA algorithms. The second method relies on pattern
structures: it builds a concept lattice directly from the original data. We proved that both resulting concept lattices are iso-
morphic. Most importantly, pattern structures offer more concise representations, better scalability, and better readability of
the (pattern) concept lattice. Thus, we gave elements for answering the challenging question, should one scale numerical attri-
butes?. We also showed substantial results for GED analysis, highlighting the important potential of pattern structures as a
biclustering technique. It remains now to compare this method with other gene expression data mining techniques across a
systematic comparative study.

Among other directions of further research, one may involve domain knowledge. The semi-lattice of descriptions (D,u)
may be viewed as an attribute hierarchy, where domain knowledge may be encoded, e.g. in some dimensions of a pattern
vector. Domain knowledge can be given by text annotations on genes, e.g. [25], for which a similarity operation u can be
defined.

Considering the similarity operation u as interval convexification generates too many patterns: some patterns and their
sub-patterns w.r.t. vmay describe almost the same set of genes, i.e. a few genes differs in their extents. Concept stability was
introduced in [19] for measuring this phenomena. In this paper, we solved the problem of un-interesting patterns thanks to a
monotone constraint. Recently, we embedded tolerance relations in pattern structures to produce only concepts with similar
objects, w.r.t. a distance on their values [16]. Furthermore, one can also be interested to use pattern structures in fuzzy set-
tings, although FCA has already been extended in [2,3] where an object is associated with an attribute with a truth degree.

Finally, and most importantly, the use of interval pattern structures should be of great interest for mining association
rules in numerical data.
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