HSE Researchers Develop Python Library for Analysing Eye Movements
A research team at HSE University has developed EyeFeatures, a Python library for analysing and modelling eye movement data. This tool is designed to simplify the work of scientists and developers by enabling them to efficiently process complex data and create predictive models.
The project was implemented as part of the Strategic Project 'Human-Centred AI' (Priority 2030).
Modern research increasingly leverages machine learning and artificial intelligence to analyse vast amounts of eye movement data. However, despite significant advancements in this field, certain challenges continue to limit the effectiveness of these methods. One such challenge is the limited flexibility of existing software solutions, which often offer a narrow range of parameter settings, making it difficult to customize them for specific research tasks. Additionally, the integration of these tools with other specialised software remains a significant limitation.
The Python library EyeFeatures, developed by the Laboratory for Social and Cognitive Informatics at HSE Campus in St Petersburg, addresses these challenges by providing a versatile and user-friendly toolkit for working with eye movement data. It includes modules for processing and analysing data collected from eye trackers, devices that monitor eye movement during the performance of various tasks.
Processing eye movement data is a complex task that involves several stages. Since the eyes do not move smoothly but rather in a series of rapid, jerky motions, focusing on specific points, the first stage of data processing is identifying areas of fixation. In the second stage, metrics such as the average gaze fixation duration and the average distance between points are calculated, enabling the creation of initial, simple predictive or diagnostic models.
All stages of data processing can be carried out using the various modules of the EyeFeatures library. The flexible, modular approach makes it easy to integrate eye movement data processing into existing research and commercial projects, from raw data to a fully developed predictive or explanatory model. For example, using the library in marketing research allows for the evaluation of consumer reactions to advertisements. Eye movement analysis will reveal which elements capture the most attention from the audience.
According to Anton Surkov, Project Head, Junior Research Fellow at Laboratory for Social and Cognitive Informatics at HSE Campus in St Petersburg, 'The library can be valuable to researchers, as it enables them not simply to replicate existing functionality from other software but to implement new algorithms and create more advanced models for research in fields such as marketing, cognitive process diagnostics, user interface and neural interface development (where control and interaction with the program occur through eye movement), as well as combine components in innovative ways to achieve new results and enhance methodology.'
This solution streamlines data analysis and accelerates the creation of predictive models, which is particularly beneficial in medical diagnostics, marketing, and the study of cognitive processes. The library has already been applied in research conducted as part of the Strategic Project 'Human-Centred AI' and was presented at the ECEM 2024 international conference in Ireland.
See also:
Researchers Examine Student Care Culture in Small Russian Universities
Researchers from the HSE Institute of Education conducted a sociological study at four small, non-selective universities and revealed, based on 135 interviews, the dual nature of student care at such institutions: a combination of genuine support with continuous supervision, reminiscent of parental care. This study offers the first in-depth look at how formal and informal student care practices are intertwined in the post-Soviet educational context. The study has been published in the British Journal of Sociology of Education.
AI Can Predict Student Academic Performance Based on Social Media Subscriptions
A team of Russian researchers, including scientists from HSE University, used AI to analyse 4,500 students’ subscriptions to VK social media communities. The study found that algorithms can accurately identify both high-performing students and those struggling with their studies. The paper has been published in IEEE Access.
HSE Scientists: Social Cues in News Interfaces Build Online Trust
Researchers from the HSE Laboratory for Cognitive Psychology of Digital Interface Users have discovered how social cues in the design of news websites—such as reader comments, the number of reposts, or the author’s name—can help build user trust. An experiment with 137 volunteers showed that such interface elements make a website appear more trustworthy and persuasive to users, with the strongest cue being links to the media’s social networks. The study's findings have been published in Human-Computer Interaction.
Updated Facts and Figures and Dashboards Now Available on HSE Website
The HSE Office of Analytics and Data Management, together with the Visual Communications Unit, has developed a new Facts and Figures about HSE University page on the HSE website. In addition, all university staff now have access to a dashboard with the updated indicators of the Priority 2030 programme.
Immune System Error: How Antibodies in Multiple Sclerosis Mistake Their Targets
Researchers at HSE University and the Institute of Bioorganic Chemistry of the Russian Academy of Sciences (IBCh RAS) have studied how the immune system functions in multiple sclerosis (MS), a disease in which the body's own antibodies attack its nerve fibres. By comparing blood samples from MS patients and healthy individuals, scientists have discovered that the immune system in MS patients can mistake viral proteins for those of nerve cells. Several key proteins have also been identified that could serve as new biomarkers for the disease and aid in its diagnosis. The study has been published in Frontiers in Immunology. The research was conducted with support from the Russian Science Foundation.
HSE to Entrust Routine CPD Programme Development to AI
HSE University, together with the EdTech company CDO Global, is launching AI-based constructors to streamline the design of continuing professional development (CPD) courses. The new service will automate the preparation of teaching materials and assessment tools, significantly reducing the time and resources required of lecturers and instructional designers.
‘Territory of the Future. Moscow 2030’ Forum-Festival to Feature Innovative Projects from HSE Graduates
Until September 14, 2025, the Russian capital is hosting a large-scale forum-festival called ‘Territory of the Future: Moscow 2030’ —a space for technology, science, and innovation. This event showcases cutting-edge developments in medicine, astronautics, and the digital economy. HSE Art and Design School is participating in the festival with two graduate projects in Product and Industrial Design.
‘The Goal of Modern Geography Is To Digitise Expert Knowledge and Integrate It with Big Data’
The importance of geographical science is increasing, as is the demand for education in this field. Since 2020, application numbers for Bachelor’s programmes at HSE University’s Faculty of Geography and Geoinformation Technology have climbed by 30%, while interest in Master’s programmes has also expanded, with applications up 10–15%. Nikolay Kurichev, Dean of the Faculty, spoke about this at a press conference hosted by MIA Rossiya Segodnya.
HSE Shares Its Experience of Urban Strategies at International Summer School in China
In the context of intensifying global geopolitical and technological competition, leading Chinese educational institutions—Zhejiang International Studies University and Peking University—organised an International Summer School. Their joint programme focused on studying global, regional, and urban development strategies. The HSE Faculty of Urban and Regional Development took part in this event.
Scientists Develop Effective Microlasers as Small as a Speck of Dust
Researchers at HSE University–St Petersburg have discovered a way to create effective microlasers with diameters as small as 5 to 8 micrometres. They operate at room temperature, require no cooling, and can be integrated into microchips. The scientists relied on the whispering gallery effect to trap light and used buffer layers to reduce energy leakage and stress. This approach holds promise for integrating lasers into microchips, sensors, and quantum technologies. The study has been published in Technical Physics Letters.