• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Operation of Cellular Networks Found Similar to Bacteria Growth in Petri Dish

Operation of Cellular Networks Found Similar to Bacteria Growth in Petri Dish

© iStock

Scientists at HSE University have discovered an approach to analysing mobile communication quality by applying the principles of surface physics

Scientists at the HSE Laboratory for Computational Physics have developed a new model for analysing communication networks that can significantly enhance the speed of mobile communications. To achieve this, the researchers used computational physics methods and phase transition models. It turns out that the functioning of cellular networks is in many ways similar to the growth of surfaces in physics. The study was performed using the HPC cHARISMa cluster at HSE University. The study findings have been published in Frontiers in Physics.

Mobile networks enable making calls, sending messages, and using the internet. However, for these networks to function smoothly, it is essential to be able to simulate their operation. Simulations help predict how a network will behave in various situations, including extreme conditions, and identify areas for improvement.

One of the key tools for studying mobile networks is parallel discrete-event simulation (PDES). This method is based on splitting a system into numerous subsystems to enable parallel modelling of various processes. Each of these subsystems has its own local virtual time, which does not align with the actual time. When the local times significantly diverge from each other, leading to process desynchronisation, the network may experience slower operation or errors. Lev Shchur and Liliia Zhukova, scientists at HSE MIEM, studied the evolution of local virtual time profiles in a cellular communication model and discovered similarities with the surface growth processes in physics.

Liliia Zhukova

Liliia Zhukova

Associate Professor, School of Applied Mathematics, HSE Tikhonov Moscow Institute of Electronics and Mathematics

After conducting a thorough analysis of the processes, we observed similarities between changes in local time in cellular communication modelling and alterations in a surface profile as it grows, eg through spray application, as the time only progresses forward. Surface physics is a well-established field with equations that facilitate analysis and modelling of various processes. We have transferred knowledge from this domain to computing technologies and constructed a model simulating the evolution of local virtual time profiles.

By comparing their findings with a model of a real mobile network, the scientists have found that the proposed method enables accurate prediction of critical moments when the network's performance may deteriorate, so that issues can be addressed proactively, leading to improved network operation.

Lev Shchur

Lev Shchur

Head, Laboratory for Computational Physics, HSE Tikhonov Moscow Institute of Electronics and Mathematics

With the help of computational physics algorithms, it becomes possible to determine the moment when local time ceases to progress, referred to in physics as the phase transition point. We can describe the events occurring around it and anticipate potential communication disruptions or alterations in load distribution at a cellular communication station. With this model, we can provide the industry with better tools for planning, constructing, and operating mobile networks.

The researchers emphasise that understanding the mechanics of parallel computing in actual high-load networks will facilitate faster and more efficient simulation of mobile networks and other systems employing similar calculations across various domains such as engineering, computer science, economics, and transportation.

See also:

‘The Fundamental Principle of Scientific Knowledge Is Honesty’

Daria Mazur has wanted to pursue science since she was 13 years old—ever since she discovered in the seventh grade that she was good at physics. In an interview for the HSE Young Scientists project, she spoke about her theoretical research on the electric double layer, speed reading, and the MGMT song ‘Little Dark Age.’

From Neural Networks to Stock Markets: Advancing Computer Science Research at HSE University in Nizhny Novgorod

The International Laboratory of Algorithms and Technologies for Network Analysis (LATNA), established in 2011 at HSE University in Nizhny Novgorod, conducts a wide range of fundamental and applied research, including joint projects with large companies: Sberbank, Yandex, and other leaders of the IT industry. The methods developed by the university's researchers not only enrich science, but also make it possible to improve the work of transport companies and conduct medical and genetic research more successfully. HSE News Service discussed work of the laboratory with its head, Professor Valery Kalyagin.

Children with Autism Process Sounds Differently

For the first time, an international team of researchers—including scientists from the HSE Centre for Language and Brain—combined magnetoencephalography and morphometric analysis in a single experiment to study children with Autism Spectrum Disorder (ASD). The study found that children with autism have more difficulty filtering and processing sounds, particularly in the brain region typically responsible for language comprehension. The study has been published in Cerebral Cortex.

HSE Scientists Discover Method to Convert CO₂ into Fuel Without Expensive Reagents

Researchers at HSE MIEM, in collaboration with Chinese scientists, have developed a catalyst that efficiently converts CO₂ into formic acid. Thanks to carbon coating, it remains stable in acidic environments and functions with minimal potassium, contrary to previous beliefs that high concentrations were necessary. This could lower the cost of CO₂ processing and simplify its industrial application—eg in producing fuel for environmentally friendly transportation. The study has been published in Nature Communications. 

HSE Scientists Reveal How Staying at Alma Mater Can Affect Early-Career Researchers

Many early-career scientists continue their academic careers at the same university where they studied, a practice known as academic inbreeding. A researcher at the HSE Institute of Education analysed the impact of academic inbreeding on publication activity in the natural sciences and mathematics. The study found that the impact is ambiguous and depends on various factors, including the university's geographical location, its financial resources, and the state of the regional academic employment market. A paper with the study findings has been published in Research Policy.

Group and Shuffle: Researchers at HSE University and AIRI Accelerate Neural Network Fine-Tuning

Researchers at HSE University and the AIRI Institute have proposed a method for quickly fine-tuning neural networks. Their approach involves processing data in groups and then optimally shuffling these groups to improve their interactions. The method outperforms alternatives in image generation and analysis, as well as in fine-tuning text models, all while requiring less memory and training time. The results have been presented at the NeurIPS 2024 Conference.

When Thoughts Become Movement: How Brain–Computer Interfaces Are Transforming Medicine and Daily Life

At the dawn of the 21st century, humans are increasingly becoming not just observers, but active participants in the technological revolution. Among the breakthroughs with the potential to change the lives of millions, brain–computer interfaces (BCIs)—systems that connect the brain to external devices—hold a special place. These technologies were the focal point of the spring International School ‘A New Generation of Neurointerfaces,’ which took place at HSE University.

New Clustering Method Simplifies Analysis of Large Data Sets

Researchers from HSE University and the Institute of Control Sciences of the Russian Academy of Sciences have proposed a new method of data analysis: tunnel clustering. It allows for the rapid identification of groups of similar objects and requires fewer computational resources than traditional methods. Depending on the data configuration, the algorithm can operate dozens of times faster than its counterparts. Thestudy was published in the journal Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia.

Researchers from HSE University in Perm Teach AI to Analyse Figure Skating

Researchers from HSE University in Perm have developed NeuroSkate, a neural network that identifies the movements of skaters on video and determines the correctness of the elements performed. The algorithm has already demonstrated success with the basic elements, and further development of the model will improve its accuracy in identifying complex jumps. 

Script Differences Hinder Language Switching in Bilinguals

Researchers at the HSE Centre for Language and Brain used eye-tracking to examine how bilinguals switch between languages in response to context shifts. Script differences were found to slow down this process. When letters appear unfamiliar—such as the Latin alphabet in a Russian-language text—the brain does not immediately switch to the other language, even when the person is aware they are in a bilingual setting. The article has been published in Bilingualism: Language and Cognition.