Искусственный интеллект обнаружил новые космические аномалии
Международная команда проекта SNAD, куда входит доцент факультета физики НИУ ВШЭ Матвей Корнилов, обнаружила 11 аномалий, 7 из которых — кандидаты в сверхновые. Исследования проводились на цифровых снимках северного неба за 2018 год, для поиска использовался метод ближайших соседей на основе K-мерных деревьев. Автоматизировать поиск аномалий позволили методы машинного обучения. Исследование опубликовано в журнале New Astronomy.
Большая часть астрономических открытий основана на наблюдениях и последующих расчетах. Еще в XX веке количество наблюдений было невелико, однако с вводом в строй широкопольных астрономических обзоров неба объемы получаемых данных многократно возросли. Например, Zwicky Transient Facility (ZTF) — широкопольный обзор северного неба — генерирует ∼1,4 ТБ данных за ночь наблюдений, а его каталог содержит миллиарды объектов. Обрабатывать такое количество данных вручную сложно и дорого, поэтому команда проекта SNAD, объединяющего ученых из России, Франции и США, решала задачу автоматизации этого процесса.
Чтобы больше узнать об астрономических объектах, ученые анализируют их кривые блеска — зависимости блеска объекта от времени. Сначала регистрируют вспышку на небе, затем фиксируют, как ее блеск эволюционирует: становится более ярким, ослабевает или совсем гаснет. Для исследования ученые взяли миллион кривых блеска реальных объектов из каталога Zwicky Transient Facility за 2018 год, а также составили 7 симулированных кривых блеска объектов исследуемых типов. Всего учитывалось около 40 свойств, например амплитуда яркости объекта и периодичность.
Константин Маланчев
«Мы описали свойства симуляций набором характеристик, который ожидали увидеть у реальных астрономических тел. Среди миллиона объектов мы искали сверхмощные сверхновые, сверхновые типа Iа, сверхновые II типа и события приливного разрыва, — объясняет один из авторов статьи постдок в университете Иллинойса в Урбане—Шампейне Константин Маланчев. — Такие классы объектов мы называем аномалиями. Они встречаются очень редко и их свойства малоизучены, либо это интересные объекты для более подробного исследования».
Затем данные кривых блеска реальных объектов сопоставляли с симуляциями с помощью метода K-мерных деревьев. K-мерное дерево — специальная геометрическая структура данных, которая позволяет разбить пространство на меньшие части, рассекая его гиперплоскостями, плоскостями, прямыми или точками. Разбиение используют для сужения диапазона поиска в K-мерном пространстве, где ищут объект со свойствами, максимально похожими на те, что описаны в 7 симуляциях.
В результате на каждую из 7 симуляций было найдено 15 наиболее похожих, реально существующих объектов из базы ZTF. Всего получилось 105 объектов. Их исследователи анализировали вручную и проверяли, являются ли они аномалиями. После ручной проверки подтвердились 11 аномалий, 7 из них — кандидаты в сверхновые, а еще 4 — активные ядра галактик, в которых могут происходить события приливного разрыва.
Мария Пружинская
«Это очень хороший результат, — комментирует один из авторов статьи Мария Пружинская, научный сотрудник Государственного астрономического института имени П.К. Штернберга. — Причем у нас получилось обнаружить не только уже открытые редкие объекты, но и несколько новых, которые были пропущены астрономическим сообществом. Это значит, что можно отладить существующие алгоритмы поиска, чтобы такие объекты больше не пропускать».
Исследование показало, что данный метод действительно эффективен, при этом довольно прост в реализации. Предложенная методика поиска объектов определенного типа универсальна и может быть применена для открытия не только редких типов сверхновых, но и других интересных астрономических объектов.
Матвей Корнилов
«Астрономические или астрофизические явления, которые не были обнаружены учеными ранее, тоже являются аномалиями, — поясняет доцент факультета физики НИУ ВШЭ Матвей Корнилов. — Наблюдательные проявления таких объектов должны отличаться от свойств уже известных объектов. В будущем мы планируем применять нашу методику для открытия новых классов объектов».
Вам также может быть интересно:
«Когда мир стремительно меняется, важно искать инструменты управления изменениями»
В начале апреля в Высшей школе экономики в Москве состоялась XIX Всероссийская научная конференция с международным участием «Параллельные вычислительные технологии» (ПаВТ). Конференция ПаВТ — ежегодное научное мероприятие, которое проводится в крупных научных центрах России. Форум в НИУ ВШЭ объединил более 200 ученых из пяти стран. Участники конференции представляли 55 организаций из 28 городов, в том числе 15 институтов РАН и НИИ, 30 университетов, 8 предприятий ИТ-индустрии и 2 промышленных предприятия.
ВШЭ — лидер конкурсного отбора Минцифры России по подготовке кадров в области ИИ
Министерство цифрового развития, связи и массовых коммуникаций Российской Федерации и Аналитический центр при Правительстве РФ завершили конкурсный отбор вузов, которые в 2025–2030 годах займутся подготовкой специалистов в сфере искусственного интеллекта. По итогам конкурсного отбора по программам высшего уровня «ТОП ДС» первое место заняла Высшая школа экономики.
Искусственный интеллект помогает точнее прогнозировать риски сложных заболеваний
Разработанные в Центре искусственного интеллекта НИУ ВШЭ нейросетевые модели значительно улучшают прогнозирование риска ожирения, диабета первого типа, псориаза и других многофакторных заболеваний. Совместное исследование с компанией Genotek показало, что алгоритмы глубокого обучения эффективнее традиционных методов, особенно при сложных взаимодействиях генов (эпистазах). Результаты опубликованы в журнале Frontiers in Medicine.
Искусственный интеллект может стать катализатором устойчивого развития
Искусственный интеллект трансформирует все сферы жизни, расширяя наши возможности и границы. В то же время технологии бросают человечеству новые вызовы, связанные с безопасностью, этикой и защитой окружающей среды. На сегодняшний день каждая нейросеть оставляет за собой большой углеродный след. Однако при грамотном управлении ИИ может принести пользу планете и стать залогом устойчивой экономики будущего. Об этом рассказал научный руководитель Лаборатории алгоритмов и технологий анализа сетевых структур НИУ ВШЭ в Нижнем Новгороде Панос Пардалос в рамках XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества.
В Вышке создали собственную MLOps-платформу
Ученые НИУ ВШЭ создали MLOps-платформу SmartMLOps. Она предназначена для исследователей в области искусственного интеллекта, которые хотели бы превратить свое изобретение в полноценный сервис. В будущем на платформе могут быть развернуты ИИ-помощники для упрощения образовательного процесса, оказания медицинской помощи, консультирования и решения многих других задач. Создатели ИИ-технологий смогут получить готовый к работе сервис в течение считанных часов. На суперкомпьютере Вышки этот сервис может быть запущен в несколько кликов.
«От нашей общей работы зависит будущее»: что несет человечеству развитие ИИ
Какие перспективы и вызовы для человечества несет развитие технологий искусственного интеллекта? Как его используют ученые? Каким будет мир, где доминирует ИИ? Эти и другие темы обсудили эксперты на форсайт-сессии «Будущее исследований в сфере искусственного интеллекта», которая прошла в НИУ ВШЭ.
ИИ позволит точно моделировать производительность систем хранения данных
Исследователи факультета компьютерных наук НИУ ВШЭ разработали новый подход к моделированию систем хранения данных на основе генеративных моделей машинного обучения. Он позволяет с высокой точностью предсказывать ключевые характеристики работы таких систем при различных условиях. Результаты опубликованы в журнале IEEE Access.
ИИ в образовании: как преодолеть соблазн готовых решений
Искусственный интеллект уже стал обыденностью для молодежи: как показал опрос, около 87% студентов ведущих вузов используют ИИ в процессе обучения. Большая часть из них отметила, что он помогает им экономить время, при этом они проверяют сделанную ИИ работу. Результаты исследования были представлены на конференции по анализу данных и технологиям ИИ Data Fusion. В ее работе приняли участие научный руководитель НИУ ВШЭ Ярослав Кузьминов и другие эксперты Вышки.
Большинство студентов не верят, что ИИ сможет заменить их на работе
Большинство студентов считают, что ИИ не сможет заменить их на работе в ближайшие десять лет. Низким такой риск называют 27,2% респондентов, 41,5% — крайне маловероятным. Эти оценки были получены НИУ ВШЭ в ходе опроса 4200 студентов в 2025 году. Они приводятся в докладе «Эпоха больших языковых моделей: почему они все еще не профессионалы», подготовленном научным руководителем НИУ ВШЭ Ярославом Кузьминовым и старшим преподавателем кафедры высшей математики НИУ ВШЭ Екатериной Кручинской. Доклад был представлен на XXV Ясинской (Апрельской) международной научной конференции по проблемам развития экономики и общества, которая проходит с 15 по 18 апреля в НИУ ВШЭ.
Точный ИИ-оракул: какие тренды интересуют бизнес
Современные технологии ежедневно меняют мир, автоматизируя бизнес-процессы в различных отраслях. Специалисты НИУ ВШЭ представили масштабный опыт команды iFORA по реализации ИИ-проектов в интересах крупных компаний и органов власти.